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Abstract—Indoor navigation technology is needed to support
seamless mobility for the visually impaired. This paper
describes the construction and evaluation of an inertial dead
reckoning navigation system that provides real-time auditory
guidance along mapped routes. Inertial dead reckoning is a
navigation technique coupling step counting together with
heading estimation to compute changes in position at each step.
The research described here outlines the development and
evaluation of a novel navigation system that utilizes
information from the mapped route to limit the problematic
error accumulation inherent in traditional dead reckoning
approaches. The prototype system consists of a wireless inertial
sensor unit, placed at the users’ hip, which streams readings to
a smartphone processing a navigation algorithm. Pilot human
trials were conducted assessing system efficacy by studying
route-following performance with blind and sighted subjects
using the navigation system with real-time guidance, versus
offline verbal directions.

I. INTRODUCTION

A wide assortment of technologies has been proposed to
develop indoor navigation systems for the blind and vision
impaired. Proximity-based and triangulation systems have
been successfully demonstrated [1] and employed. Despite
the technical success of these technologies, broad adoption
has been limited due to their significant infrastructure and
maintenance costs (for review, see Giudice and Legge, 2008
[2]). The approach explored in this research seeks to solve
this infrastructure cost problem by utilizing only body-worn
inertial sensors, MEMS accelerometers and gyros, combined
with a smartphone processing a navigation algorithm. The
approach described here is one component of an ongoing
project that will ultimately fuse several complementary
indoor navigation technologies together. In recent
publications, the authors have described and demonstrated
another component of this project utilizing magnetic sensing
of indoor magnetic anomalies to localize the traveler along an
indoor route [3][4]. To optimize each navigation component,
a complete indoor navigation solution has been constructed
and tested using only the current technology under
development. This approach has provided our team with
frequent opportunities to demonstrate our technology and
user interface with potential users.
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Indoor navigation technology is needed to support
seamless mobility for the visually impaired. Most people who
are blind or have low vision can navigate outdoors using a
cane, guide dog or their own low vision as an aid, but indoor
navigation in large or unfamiliar buildings can be very
challenging. To be done accurately, it requires reading signs,
room numbers, building maps, and/or identifying landmarks,
tasks which are difficult or impossible for a person with low
vision. A significant problem in indoor navigation for the
visually impaired relates to orientation information: knowing
current position in the building and updating changing
position/heading with movement. The biggest challenge to
low-vision navigation is not mobility information, awareness
and avoidance of obstructions to the path of travel, or in
executing routes, but with spatial updating, spatial inference
and cognitive map development [5].

II.PEDESTRIAN DEAD RECKONING APPROACH

The navigator technology described here is based on a
pedestrian dead reckoning (PDR) approach. PDR algorithms
combine step detection with heading estimation to compute
changes in position. Body worn accelerometers are sensitive
to the characteristic motions involved with walking and this
data can be processed to detect steps. Step detection is
coupled with an individual’s measured gait length to provide
an estimate of the distance traveled with each step.
Sophisticated PDR approaches include algorithms to estimate
the change in gait length as an individual modifies their
stride.

Heading is typically measured by magnetometers sensing
the Earth’s field, or gyroscopes which sense angular velocity.
When combined with the accelerometer’s measurement of
the gravity down vector, the components of the magnetic
field or angular velocity in the horizontal plane provide an
estimation of heading.

Given a known starting point and a measured gait length,
PDR can provide a users’ approximate real-time position
without relying on external infrastructure. This approach,
however, suffers from error accumulation. Small errors in
gait length and heading slowly accumulate and eventually
overwhelm the position estimate. Dead reckoning is typically
paired with localization technologies that do not suffer from
error accumulation, such as GPS, to avoid this problem.

The approach developed here uses the trajectory of the
planned route to supply additional information to the
navigator algorithms, enabling the problem of error
accumulation to be controlled. A planned route is composed
of straight-line segments and expected heading changes. PDR
is used within straight-line segments to update the distance
along the segment. Error accumulation is controlled by
comparing sensed turns to map features. As the traveler



executes an expected turn the system detects the heading
change and updates the current position estimate to the start
of the next route segment. In this way, the PDR position
estimate is only used for relatively short segments, typically
less than 100m. This approach is well suited to the modest
consumer grade sensors found in smartphones, and can work
without foot or shin mounted sensors, common in PDR
approaches.

The system’s user interface consists of text-to-speech
audio cues associated with map features, and triggered based
on proximity. As the user traverses a route segment the
system announces directional cues such as upcoming turns as
well as nearby points of interest. This approach is well suited
to the needs of blind travelers who may have excellent
mobility skills, and are sensitive to subtle environmental cues
such as changes in acoustics. Announcing nearby features
can both reinforce cognitive map development as well as
facilitate innate orientation skills to increase overall
navigation accuracy.

III. EXPERIMENTAL METHODS

A. Sensor Hardware

The hardware utilized
in the pilot human trials
consisted of  custom
wireless inertial
measurement units (IMUs)
and Android smartphones.
Figure 1 shows the
Bluetooth IMU that was
used in this research.
Acceleration was sensed
using a LIS352AX 3-axis
MEMS accelerometer and  used to instrument subjects in
angular  rotation  was this research.
sensed using a LPR430AL 2-axis and a LY330ALH 1-axis
gyroscope, all manufactured by ST Microelectronics. Sensor
data was sampled and transmitted at 200 Hz to a smartphone.
Figure 3 shows the final navigator application operating on a
Google Nexus 4 smartphone. The use of the wireless IMU
was opted for instead of the smartphone’s integrated
accelerometer and gyroscope to ensure greater control over
the placement and orientation of the sensors during testing.
IMUs were worn on the subjects’ hip for the tests described
below. In principle, however, the methods described are
suitable for, and were developed to use the integrated sensors
on modern smartphones.

Figure 1: Custom wireless IMU

B. Map Construction

The focus for the research described here is the tracking
of individuals as they traverse routes designed to take them
between fixed starting and ending positions within a building,
based on mapped routes. Map creation started with design of
four approximately equally complex routes (to facilitate
counterbalancing in the pilot human trials.) Next, the routes
were surveyed using an inexpensive measuring wheel to
measure the length of straight-line segments, and the position
of points of interest within these segments. The change of
heading between segments was estimated without aid of
instruments, and refined using Google Maps of the Mall.
Figure 2 shows a simple route surveyed at the Mall of
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Figure 2: A simple route at the Mall of America in
Bloomington, MN, overlaid on the Google Map for the Mall.
The blue markers outline the straight-line segments; the red
markers show the location of the points of interest.

America. The route follows the edge of the hallway,
reflecting the mobility technique called shorelining used by
white cane users.

C. Step Detection

An approach to step detection was developed that
recognized the practical limitations associated with the
application goal of utilizing smartphone sensors. Common
approaches that seek to optimize sensitivity to step detection
and stride length estimation commonly choose the foot or the
shin for sensor placement. Lower leg placement is sensitive
to the legs swing angle as well as the different phases of the
stride. This placement is not feasible for a smartphone
application, so instead the upper body placement of the
sensor was studied. One important difference between lower
leg and upper body placement is that upper body placement
detects the motion from both left and right steps, more or less
equally, and the acceleration signal has fewer high frequency
components associated with the foot plant.

Using a dataset of 3-axis accelerometer data collected at
the hip during normal walking activities, indoor and outdoor,
and with varying speeds, a number of candidate step
detection algorithms were — = .

implemented and tested.

Libby’s method [6], a Pan- = = -
Tompkins algorithm [7], subject: [T
and Wolf’s Method [8] Bl (s

were compared to a simple
threshold based approach.
The  simple  threshold
approach  analyzes the
magnitude of the low-pass
filtered acceleration vector,
and requires a positive
excursion above 1G plus
threshold  following a
negative excursion of 1G
minus threshold. The use of
acceleration magnitude has
the benefit of rotational
invariance, avoiding the
need to place the sensor in
some preferred orientation.
For  ordinary  walking

Figure 3: Navigator application
running on a Nexus 4 smartphone
and showing users current
position estimate.
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Figure 4: Measured step lengths from the training dataset overlaid
with a simple Gaussian fit, and a kernel density estimate.
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motion the simple threshold algorithm performed comparably
to the more sophisticated methods. Due to its simplicity and
adequate performance, the simple threshold algorithm was
selected for use in the final navigator application.

Once an algorithm for step detection had been selected, a
study was performed to determine if a hip mounted sensor
could infer changes in gait length. Two datasets were
collected for this study using a single subject. An outdoor
dataset with normal walking was collected using a
centimeter-scale accuracy differential GPS system to provide
a direct measurement of stride length. A second dataset was
gathered using a treadmill set at fixed speeds, allowing the
stride length to be estimated using the time between steps
inferred from the step detection algorithm. Figure 4 shows
the distribution of step lengths for the test subject, and shows
the step length variance.

To develop a step length estimator 52 variables were
measured during each step, such as step duration, sensor
variances, maximum sensor values, derivatives of the
acceleration, together with changes in these quantities
between steps. The correlation between these variables and
the measured step length was performed to identify the
variables with the greatest sensitivity. Figure 5 shows the
four variables with the highest correlation together with the
data scatterplots. Step length estimation was not used for the
final navigator pilot human evaluations described below, and
is still under development.
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Figure 5: Scatter plots of the four variables with highest correlation
to step length: (upper left) accelerometer variance per step, (upper
right) maximum acceleration (in G’s) per step, (lower left)
maximum angular velocity per step (lower right) variance of angular
velocity per step.

D. Heading Estimation

Heading was inferred using the approach developed by
Madgwick, et al. [9]. This approach uses a quaternion
representation for orientation and is computationally efficient
and relatively easy to implement. Both the Magnetic Angular
Rate and Gravity (MARG) and the gyroscope-only IMU
approaches were implemented and tested in both indoor and
outdoor environments. The MARG is a complementary filter
that mixes the orientation estimate obtained by integrating the
gyroscope measurements together with the estimate from the
accelerometer and magnetometer. In contrast, the IMU filter
does not use a magnetometer and only provides a relative
orientation measurement; unlike MARG it must be given a
starting heading estimate.

In outdoor environments both implementations performed
acceptably, although the IMU filter showed a small drift over
time, about 10 degrees per minute. In indoor environments
with strong magnetic anomalies the MARG orientation
estimate showed unacceptable heading accuracy. It was
concluded that the IMU filter, despite its potential for drift,
provided the best orientation solution for indoor
environments due to its immunity to magnetic distortions.

IV. WAYPOINT NAVIGATION ALGORITHMS

The goal of the waypoint navigator is to compute
position estimates based on the heading, step detection and
measured step lengths. Knowledge of the users planned route
trajectory offers additional information to control the error
accumulation inherent in dead reckoning techniques.

Route maps, such as that shown in Figure 2, are
represented by straight line segments of a given length and
heading, and followed by a known heading change to the
next segment. While a user is traveling on a segment the
navigational problem is considered to be one dimensional:
step counting was used to estimate distance along the
segment. As points of interest are reached the navigator’s
user interface was triggered to announce these features via
text-to-speech. As the end of a segment was neared, the
upcoming turn was announced ahead of the turn to both allow
the user to use their own skills to detect the turn, as well as to
accommodate potential position errors due to error
accumulation.

Turn detection was used to ensure the user stays on
course. While the user was walking along a straight line
segment heading estimates from the IMU filter, averaged per
step are used to form both an estimate of the recent heading
from the last N steps, as well as a long term heading average
from the previous steps along the segment, excluding the
most recent N steps. The difference between the short term
and long term heading is used to compute the turn estimator
T; at stepi, shown in Eq. 1. This formulation has the
advantage of being insensitive to long term heading drift,
which is expected from the IMU filter.
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Eq. 1

If a heading change greater than a minimum threshold is
detected while on a segment then an off-route indication is
triggered. As the user approaches the end of a segment the
heading change associated with the expected turn is looked



for. If a change in course is detected that is within tolerance
of the expected turn then the navigator uses that information
to update the users’ position at the start of the next segment,
thus correcting for any accumulated errors. Finally, if the
expected turn is not sensed an off-route indication is triggered
if the position estimate overshoots the segment length by
some tolerance. Step lengths were not adjusted, based on
measured over or undershoot, due to the concern that such a
feature would require extensive testing for minimal increase
in performance.

V. PILOT HUMAN STUDY

The feasibility study for the prototype navigator was
assessed in a pilot human behavioral experiment carried out
in the Mall of America, in Bloomington, MN (see Figure 2.)
The goal of this feasibility study was to demonstrate the
efficacy of our approach for supporting real-time guidance in
a challenging environment where end-users actually want to
travel. Eight blind individuals who were either totally blind
or only had very limited light perception participated in the
study. All self-reported as being highly independent travelers.
In addition, eight sighted individuals participated as controls
in the study, for a total of N=16 subjects, ranging in age from
18 to 59 years.

After a practice session where participants were
familiarized with the experimental apparatus and task,
including calibration of the system to the participant’s stride
length and a test run with the system with corrective
feedback, they began the experimental trials. During the route
navigation phase, participants were started at one of the four
pre-determined route origin locations in the Mall and asked
to find a route to an unknown destination target location (a
specific store entrance). Route navigation occurred in two
conditions (condition by route order was counter-balanced
between participants). In the “System Aided” condition,
participants walked along the route with real-time assistance
from the system describing what stores they were passing,
alerting them to salient landmarks along the route, the length
of each route segment (in feet), route deviations (decision
points), and describing the actions to perform at these
decision points. In the “Unaided Memory” condition,
participants received the same verbal instructions (minus the
store names which imposed an undue cognitive load) but
rather than hearing this information sequentially in real-time
as they walked the route, the instructions were provided all at
once at the route’s origin. For both conditions, the
experimenter served as a bystander who could provide
critical information if the participant got disoriented or felt
they needed additional assistance, similar to what might be
requested from a random passerby during independent travel
(see [4] for more detail on our methodology.)

A. Results

The results provide compelling support for the efficacy of
using the system to navigate through our highly complex
experimental setting. Where six out of eight participants in
the unaided memory condition made bystander requests, for a
total of 26 requests, only 4 total requests were made in the
system aided condition. Comparing the temporal duration
required to navigate the routes between conditions also
yielded marked differences. Where blind participants in the
system aided condition took an average of 221 s to traverse

the routes, the same routes took 300 s in the unaided memory
condition. A paired sample T-test confirmed that these
differences between conditions were statistically reliable,
t(15)=-2.64, two-tail, p= 0.018. In addition, six out of eight
trials in the system aided condition led to correct localization
of the route’s destination (with the two misses yielding small
localization errors on the order of feet based on calibration
noise). By contrast, only two of eight trials in the unaided
memory condition yielded correct localization.

Comparing performance between the blind and sighted
participants was also informative. The sighted participants
took an average of 213 s to traverse the routes. Independent
sample T-tests revealed that their performance reliably
differed from the blind participants in the unaided memory
condition, t(14)=6.48, two-tail, p= 0.016 but that the sighted
performance was insignificant compared to the blind
participants in the system aided condition, t(14)=8.12, two-
tail, p= 0.637. These results provide clear empirical evidence
that blind travelers using real-time route information from
our system can perform on-par with their sighted
counterparts. The convergence of statistical performance
measures and enthusiasm from the subjects after using the
system, combined with the unique advantages of inertial
navigation technology demonstrates the importance of
providing real-time guidance information and suggests that
our system is a promising approach for future development.
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