

Frobenius C^* -algebras and local adjunctions of C^* -correspondences

Tyrone Crisp

University of Maine

NYC-NCG seminar

29 September 2021

The Dictionary

Spaces

X : loc. compact Hausdorff

Algebras

$C_0(X)$: commutative C^* -algebra of continuous functions $X \rightarrow \mathbb{C}$ vanishing at ∞

continuous map

noncommutative C^* -algebra

???

What is a morphism of non-unital C^* -algebras?

Multiplier algebras

A : C^* -algebra

$$M(A) = \{t : A \rightarrow A \mid \exists t^* : A \rightarrow A \text{ with } t(a)^*b = a^*t^*(b)\}$$

$M(A)$ is a unital C^* -algebra

$A \hookrightarrow M(A)$ via $a \mapsto [\text{left mult. by } a]$

A is unital iff $A = M(A)$

Example: $M(K(H)) = B(H)$

Example: $M(C_0(X)) = C(\beta X)$, Stone-Cech compactification

The Dictionary, again

Spaces

loc. compact Hausdorff

Algebras

commutative C^* -algebra

continuous map

noncommutative C^* -algebra

$A \dashrightarrow B$: nondegenerate[†]
*-homomorphism $A \rightarrow M(B)$

[†] $B = AB$

The Dictionary, again

Spaces

loc. compact Hausdorff

continuous map

Algebras

commutative C^* -algebra

noncommutative C^* -algebra

$A \dashrightarrow B$: nondegenerate[†]
*-homomorphism $A \rightarrow M(B)$

[†] $B = AB$

sheaves

modules. . .

Hilbert C^* -modules

A : C^* -algebra

Hilbert A -module : right A -module X with inner product

$\langle \cdot | \cdot \rangle : X \times X \rightarrow A$ satisfying Hilbert space axioms

Morphisms:

adjointable

$$\mathcal{L}_A(X, Y) = \{t : X \rightarrow Y \mid \exists t^* : Y \rightarrow X \text{ s.t. } \langle t(x) | y \rangle = \langle x | t^*(y) \rangle\}$$

compact

$$\mathcal{K}_A(X, Y) = \overline{\text{span}}\{|y\rangle\langle x| : x' \mapsto y\langle x | x'\rangle\}$$

Example: $A = \mathbb{C}$: X is a Hilbert space; \mathcal{L}_A = bounded operators,
 \mathcal{K}_A = compact operators

Example: A commutative $\Rightarrow X$ = sections of a cts field of Hilbert spaces

What is (or should be) 'the category of Hilbert A -modules'?

The category of Hilbert A -modules

Objects : Hilbert A -modules Morphisms?

$L_A(X, Y)$? Ok, but sometimes (eg K -theory) we want to remember $K_A(X, Y)$

$K_A(X, Y)$? But that's not a category: usually $\text{id} \notin K_A(X, X)$

Idea: consider the non-unital C^* -category[†] K_A of Hilbert A -modules and compact operators

[†] C^* -category : morphisms have $*$, linear structure, norm, $\|t^*t\| = \|t\|^2$... and $t^*t \geq 0$

The category of Hilbert A -modules

Objects : Hilbert A -modules Morphisms?

$L_A(X, Y)$? Ok, but sometimes (eg K -theory) we want to remember $K_A(X, Y)$

$K_A(X, Y)$? But that's not a category: usually $\text{id} \notin K_A(X, X)$

Idea: consider the non-unital C^* -category[†] K_A of Hilbert A -modules and compact operators

[†] C^* -category : morphisms have $*$, linear structure, norm, $\|t^*t\| = \|t\|^2$... and $t^*t \geq 0$

Non-unital category?!?

Multiplier categories

Theorem [Kandelaki, Vasselli, Antoun-Voigt] : Every nonunital C^* -category C has a multiplier category $M(C)$, and $C \hookrightarrow M(C)$ with equality iff C is unital.

Idea: $t \in M(C)(X, Y)$ is a collection of maps $C(Z, X) \rightarrow C(Z, Y)$ and $C(Y, Z) \rightarrow C(X, Z)$ (for each object Z) defining what 'composition with t ' means.

Example: nonunital C^* -alg \Leftrightarrow non-unital C^* -cat with one object
 $\rightsquigarrow M_{\text{algebra}} = M_{\text{category}}$.

Example: $M(K_A) = L_A$

Functors between non-unital C^* -categories

C, D : non-unital C^* -cats (eg $C = K_A$, $D = K_B$)

A **nondegenerate $*$ -functor** $C \dashrightarrow D$ is a functor $\mathcal{F} : C \rightarrow M(D)$
(objects \rightarrow objects, morphisms \rightarrow multipliers, preserves \circ)
satisfying $\mathcal{F}(t)^* = \mathcal{F}(t^*)$, and

$$D(\mathcal{F}X, \mathcal{F}Y) = \mathcal{F}C(Y, Y) \circ D(\mathcal{F}X, \mathcal{F}Y) = D(\mathcal{F}X, \mathcal{F}Y) \circ \mathcal{F}C(X, X)$$

Example: nonunital C^* -algs \rightsquigarrow morphisms from the dictionary

Theorem [Blecher, '97]: The nondegenerate $*$ -functors $K_A \dashrightarrow K_B$ are (up to unitary natural isomorphism) the functors $X \mapsto X \otimes_A F$ where F is a C^* -correspondence[†] from A to B .

In particular, $K_A \cong K_B$ (unitarily equivalent via nondegenerate $*$ -functors) iff A and B are Morita equivalent.

[†]Hilbert B -module + morphism $A \dashrightarrow K_B(F)$

Local adjunctions

$A, B : C^*$ -algebras ${}_A F_B, {}_B G_A : C^*$ -correspondences

A **local adjunction** between F and G is a natural isomorphism

$$K_B(X \otimes_A F, Y) \xrightarrow{\cong} K_A(X, Y \otimes_B G)$$

for all Hilbert A -modules X and Hilbert B -modules Y . ('Natural' means with respect to all adjointable maps.)

Theorem [Clare-C-Higson]: local adjunction \Leftrightarrow conjugate-linear completely bounded isomorphism $\varphi : F \rightarrow G$ satisfying $\varphi(afb) = b^* \varphi(f) a^*$ \Leftrightarrow structure of a bi-Hilbertian bimodule of finite numerical index on F [Kajiwara-Pinzari-Watatani].

Local adjunctions are **2-sided**: $\varphi : F \rightarrow G \rightsquigarrow \varphi^{-1} : G \rightarrow F$

Examples of local adjunctions

$$\mathrm{K}_B(X \otimes_A F, Y) \xrightarrow{\cong} \mathrm{K}_A(X, Y \otimes_B G) \iff \varphi : F \xrightarrow{*} G$$

- $_A F_B$ a Morita equivalence, $G = \mathrm{K}_B(F, B)$, $\varphi(f) = \langle f |$
- $A \hookrightarrow B$ nondegenerate subalgebra, $\varepsilon : B \rightarrow A$ conditional expectation such that $\mathrm{const} \cdot \varepsilon - \mathrm{id}_B \geq 0$
 $\rightsquigarrow F = {}_A B_B$ with $\langle b_1 | b_2 \rangle = b_1^* b_2$, $G = {}_B B_A$ with
 $\langle b_1 | b_2 \rangle = \varepsilon(b_1^* b_2)$, $\varphi : F \xrightarrow{b \mapsto b^*} G$. [Frank-Kirchberg]
- G real reductive group, $P = LN$ parabolic subgroup \rightsquigarrow locally adjoint pair of C^* -correspondences $C_r^*(G) C_r^*(G/N) C_r^*(L)$ and $C_r^*(L) C_r^*(N \backslash G) C_r^*(G)$ (parabolic induction and restriction) [CCH]

Local adjunctions and adjunctions

Theorem [KPW]: Let $\varphi : F \rightarrow G$ be a local adjunction. The adjunction isos extend to natural isos

$$L_B(X \otimes_A F, Y) \xrightarrow{\cong} L_A(X, Y \otimes_B G)$$

if and only if A acts on F by B -compact operators, and B acts on G by A -compact operators.

Example: cond exp $\varepsilon : B \rightarrow A$ with finite quasi-basis
($x_1, \dots, x_n, y_1, \dots, y_n \in B$ with $b = \sum_i x_i \varepsilon(y_i b) = \sum_i \varepsilon(b x_i) y_i$)

Theorem [CCH]: Let $\varphi : F \rightarrow G$ be a local adjunction. For all Hilbert space representations $A \rightarrow B(H)$ and $B \rightarrow B(K)$ we have natural isos

$$B_A(F \otimes_B K, H) \xrightarrow{\cong} B_B(K, G \otimes_B H).$$

Question: are local adjunctions like adjunctions?

Units and counits

Suppose we have an adjunction on L_A and L_B :

$$(*) \quad L_B(X \otimes_A F, Y) \xrightarrow{\cong} L_A(X, Y \otimes_B G).$$

□ put (1) $X = A$, $Y = F$, and (2) $X = G$, $Y = B$:

$$(1) \quad L_B(F, F) \xrightarrow{\cong} L_A(A, F \otimes_B G), \quad \text{id}_F \mapsto \eta \text{ unit}$$

$$(2) \quad L_B(G \otimes_A F, B) \xrightarrow{\cong} L_A(G, G), \quad \text{counit } \varepsilon \leftarrow \text{id}_G$$

□ $F \xrightarrow{af \mapsto \eta(a) \otimes f} F \otimes_B G \otimes_A F \xrightarrow{f_1 \otimes g \otimes f_2 \mapsto f_1 \varepsilon(g \otimes f_2)} F$ is the identity
(and similarly for G)

□ (unit,counit) as above determines an adjunction $(*)$

□ ε^* and η^* are the unit and counit of another adjunction

□ this 'unit/counit' picture of adjunctions is often more useful than the 'isomorphisms between Homs' picture.

Units and counits for local adjunctions?

Now suppose we have a local adjunction:

$$K_B(X \otimes_A F, Y) \xrightarrow{\cong} K_A(X, Y \otimes_B G) \iff \varphi : F \xrightarrow{*} G$$

Q: \exists unit $\eta \in K_A(A, F \otimes_B G)$ and counit $\varepsilon \in K_B(G \times_A F, B)$?

A: only if we have an actual adjunction on L_A and L_B .

But we do have something like a unit and counit:

$F \otimes_B G \cong K_B(F)$ (cb iso of operator spaces) and we have

$$\eta : A \dashrightarrow K_B(F) \quad (\text{action morphism})$$

$G \otimes_A F \cong K_A(G)$ and we have a completely positive map

$$\varepsilon : K_A(G) \rightarrow B, \quad |g_1\rangle\langle g_2| \mapsto \langle \varphi^{-1}(g_1) | \varphi^{-1}(g_2) \rangle$$

$\implies \eta$ and ε don't exist as adjointable operators (natural transformations between nondegenerate $*$ -functors)...

... but they do exist in C^* -algebra theory.

Goal: Find the right **2-category** for studying Hilbert C^* -modules.

In search of a 2-category

2-category: objects, morphisms, and 2-morphisms (morphisms between morphisms)

Example: categories, functors, and natural transformations

Example: non-unital C^* -categories, nondegenerate $*$ -functors, natural transformations

Example (almost): C^* -algebras, C^* -correspondences, and adjointable bimodule maps (this is a **bicategory**)

Problem: Find a 2-category with objects C^* -categories; morphisms nondegenerate $*$ -functors; and **some kind of 2-morphisms** such that

- isomorphisms $K_A \cong K_B \iff$ Morita equivalences
- adjunctions between K_A and $K_B \iff$ local adjunctions (or some other sufficiently flexible notion)

Evidence that a good 2-category exists: Frobenius algebras

A : ring (with unit). A **Frobenius algebra** over A is:

- a ring C
- a ring homomorphism $\eta : A \rightarrow C$
- an A -bimodule map $\varepsilon : C \rightarrow A$

such that $C \otimes_A C$ with mult. $(c_1 \otimes c_2) \cdot (c_3 \otimes c_4) = c_1 \varepsilon(c_2 c_3) \otimes c_4$ has a multiplicative identity.

Theorem [Morita]: (1) If ${}_A F_B$ is an A - B bimodule such that the functor $\otimes_A F : \text{Mod}(A) \rightarrow \text{Mod}(B)$ has a two-sided adjoint, then $\text{End}_B(F)$ is a Frobenius algebra over A .

(2) Every Frobenius algebra arises in this way.

More generally:

Theorem [Lauda]: Every 2-sided adjunction in a 2-category gives rise to a Frobenius algebra in a monoidal category, and vice versa.

Frobenius C^* -algebras

A : ring (with unit). A **Frobenius algebra** over A is:

- a ring C
- a ring homomorphism $\eta : A \rightarrow C$
- an A -bimodule map $\varepsilon : C \rightarrow A$

such that $C \otimes_A C$ with mult. $(c_1 \otimes c_2) \cdot (c_3 \otimes c_4) = c_1 \varepsilon(c_2 c_3) \otimes c_4$
has a multiplicative identity.

A : **C^* -algebra**. A **Frobenius C^* -algebra** over A is:

- a C^* -algebra C
- a morphism $\eta : A \dashrightarrow C$
- a **cp** A -bimodule map $\varepsilon : C \rightarrow A$

such that $C \otimes_A^h C$ with mult. $(c_1 \otimes c_2) \cdot (c_3 \otimes c_4) = c_1 \varepsilon(c_2 c_3) \otimes c_4$
has a **bounded approximate** identity.

$\otimes^h =$ Haagerup tensor product: $C \otimes_A^h C = \overline{\text{span}}\{c_1 * c_2\} \subset C *_A C$

Frobenius C^* -algebras and local adjunctions

Theorem [arXiv:2108.08345]

- (1) If ${}_A F_B$ is a C^* -correspondence such that the functor $\otimes_A F : K_A \rightarrow K_B$ has a local adjoint, then $K_B(F)$ is a Frobenius C^* -algebra over A .
- (2) Every Frobenius C^* -algebra arises in this way. [And this gives a bijection of isomorphism classes for the natural notions of isomorphism on each side.]

Idea (1): Let $\varphi : F \rightarrow G$ be a local adj. and let $C = K_B(F)$. Then

$$C \otimes_A^h C \rightarrow K_A(F \otimes_B G), \quad |f_1\rangle\langle f_2| \otimes |f_3\rangle\langle f_4| \longmapsto |f_1 \otimes \varphi(f_2)\rangle\langle f_3 \otimes \varphi(f_4)|$$

is an isomorphism of Banach algebras [Blecher], and the C^* -algebra $K_A(F \otimes_B G)$ has a bounded approximate identity. □

Frobenius C^* -algebras and local adjunctions

Theorem: (2) Frobenius C^* -algebras come from local adjunctions.

Idea (2): $C, \eta : A \dashrightarrow C, \varepsilon : C \rightarrow A$ Frobenius C^* -algebra over A .

Set ${}_A F_C = {}_A C_C$, $\langle c_1 | c_2 \rangle = c_1^* c_2$; $G = {}_C C_A$, $\langle c_1 | c_2 \rangle = \varepsilon(c_1^* c_2)$.

Key estimate: $\text{id} : F \rightarrow G$ is completely bounded from below.

Algebra: for all $c \in C, a \in A$ one has

$$(ca)^*(ca) = \lim_{\lambda} \langle c \otimes \eta(a) | cax_{\lambda} \rangle_{G \otimes_A F}$$

where x_{λ} is a bai for $C \otimes_A^h C$

Cauchy-Schwartz:

$$\|\langle c \otimes \eta(a) | cay_{\lambda} \rangle\| \leq \|ca\|_G \cdot \|\varepsilon\| \cdot \|ca\|_C \cdot \|x_{\lambda}\|_{C \otimes_A^h C}$$

and all of this applies to matrices with the same constants.

Conclusion

Problem: Find a 2-category with objects C^* -categories; morphisms nondegenerate $*$ -functors; and **some kind of 2-morphisms** such that

- isomorphisms $K_A \cong K_B \iff$ Morita equivalences
- adjunctions between K_A and $K_B \iff$ local adjunctions.

Theorem [Lauda]: If this existed, then local adjunctions would correspond to Frobenius algebras.

Theorem: Local adjunctions do correspond to something that looks a lot like a Frobenius algebra.

Conclusion: C^* -algebras and their modules don't fit perfectly with category theory . . . but there is hope that they can be made to.

Conclusion

Problem: Find a 2-category with objects C^* -categories; morphisms nondegenerate $*$ -functors; and **some kind of 2-morphisms** such that

- isomorphisms $K_A \cong K_B \iff$ Morita equivalences
- adjunctions between K_A and $K_B \iff$ local adjunctions.

Theorem [Lauda]: If this existed, then local adjunctions would correspond to Frobenius algebras.

Theorem: Local adjunctions do correspond to something that looks a lot like a Frobenius algebra.

Conclusion: C^* -algebras and their modules don't fit perfectly with category theory . . . but there is hope that they can be made to.

Thanks!