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ABSTRACT. Using a simple relative trace formula, we compute averages of
twisted modular L-values for newforms of cubic level. In the case of Maass
forms, we obtain an exact formula. For holomorphic forms of weight £ > 2,
we obtain an asymptotic formula which agrees with the estimate predicted by
the Lindel6f hypothesis in the weight and level aspects.

February 27, 2015

1. INTRODUCTION

A simple trace formula is one in which a local discrete series matrix coefficient is
used, thereby annihilating the contribution of the continuous spectrum (see Lecture
V of [Ge] for a general overview). By choosing the matrix coefficient appropriately,
one can also project onto a particular local new vector. For example, using the
matrix coefficient attached to a lowest weight vector for the weight & discrete series
of GLy(R), one isolates the space of holomorphic cusp forms of weight k from the
rest of the automorphic spectrum. In essence, this was the method used by Selberg
in his formula for the trace of a Hecke operator ([Sel] §4).

In this paper we give a non-archimedean illustration of this technique, using
matrix coefficients attached to certain supercuspidal representations of GL2(Q,).
We work with a relative trace formula to compute averages of the form

Z )\n(u)ar(u)A(sv U, X) Br(u),

ul?

ueF

where v ranges over the set of newforms of weight k and level N3 for N square-free
and k > 2 or k = 0, A\, (u) is the associated eigenvalue of the Hecke operator T,
a,(u) is the r-th Fourier coefficient, A(s,u, x) is the completed L-function, twisted
by a fixed primitive character x of conductor D prime to N, and B,.(u) is a function
of the spectral parameter of u with sufficient decay, which we take to be 1 in the
case of holomorphic forms (i.e. when k > 2).

We have two main results, one for Maass newforms and one for holomorphic
newforms. Each is an explicit version of the relative trace formula introduced by
Jacquet in [J]. In broad terms, we start with a kernel function attached to the
Hecke operator Ty, and integrate it (against a character) over the group N x M,
where N is unipotent and M is diagonal. The unipotent integral gives the Fourier

In the published article, equation (2.23) is incorrect, and consequently so are equations (3.6)
and (3.9). All other results, including the main theorems, are unaffected. This is a corrected
version of the paper.
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coefficient a,-(u), and the diagonal integral gives the L-function. The geometric side
reduces to the calculation of numerous local orbital integrals.

The result for Maass forms is given in Theorem below. A special case of it is
the following exact expression for a weighted average of Maass newform L-values:

Theorem 1.1. Let x be a primitive Dirichlet character with modulus D. Let h(iz)
be any even Paley-Wiener function, and let hy(s) be the e~2™*-twisted spherical
transform of the inverse Selberg transform of h (cf. ) Then there exists a
constant C' > 1 depending only on h, such that for all square-free integers N > C
prime to D and all complex numbers s,

(L) > A bk, om) = 2 (s) [T - ).

3 |12
u  EFEU(N3) YV sl pIN

Here, F*"(N?®) denotes the set of even Maass newforms on I'o(N®) of weight 0
and trivial central character, normalized with first Fourier coefficient a1(u) =1, t;
is the spectral parameter of uj, K,(x) is the Bessel function, and ¢(N?3) denotes

the index [SLa(Z) : To(N3)].

Remarks:

(1) It is interesting to note that the right-hand side of (and hence also the
left-hand side for N sufficiently large) is independent of x.

(2) Given any s € C, we can choose h so that hi(s) is nonzero. Therefore
an immediate consequence is the existence of a Maass newform of level N3 with
nonvanishing twisted L-value at s.

(3) We normalize the Petersson norm on page |4 so that it is independent of the
choice of level and coincides with the adelic L?-norm. Many people write |ul|?
where we have written 1 (N3)|u/|?.

The analogous result for holomorphic cusp forms is stated in Theorem In
that case, we no longer have an exact formula because the archimedean discrete
series matrix coefficient is not compactly supported. But the resulting asymptotic
formula still gives nonvanishing, as well as a bound for the sum of the central L-
values which is as strong as that predicted by the Lindel6f Hypothesis in the weight
and level aspects (cf. Corollary. In Corollary we compare the contribution
of newforms and oldforms in the analogous sum for the full space of cusp forms
of level N3. When N is prime, the contribution of oldforms becomes negligible as
N — oo, but in the other extreme, if N is the product of the first m primes, the
contribution of newforms becomes negligible as m — oco.

In both of our main results, we project onto the newforms of cubic level by
using the simple supercuspidal representations defined by Gross and Reeder [GRI.
Matrix coefficients for these representations have previously been used in the trace
formula by Gross in [G1], where, for a simple group over a totally real number field,
he computed the multiplicities of cuspidal representations with certain prescribed
local behavior in terms of values of modified Artin L-functions at negative integers.
The local test vector used by Gross has a very simple matrix coefficient and is
ideally suited for counting representations. However, it is not a new vector so it
cannot be used for our purpose here.

In [KL4], we defined simple supercuspidal representations for the group GL,,(Q,),
showing that they have conductor p™*! and exhibiting the new vector. We then
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gave an explicit formula for the matrix coefficient attached to the new vector in
the case where n = 2. Lastly, we showed that every irreducible admissible repre-
sentation of GL2(Q,) with conductor p? is a simple supercuspidal representation,
assuming that its central character is unramified or tamely ramified. In the present
paper, at each place p|N we sum the new vector matrix coefficients attached to
the 2(p — 1) distinct simple supercuspidal representations to obtain a test func-
tion which projects onto the newforms of level N2 and annihilates the continuous
spectrum.

We restrict to the field Q throughout for simplicity, but since all of the computa-
tions are local, there would be no serious obstruction to working over an arbitrary
totally real number field.

Acknowledgements: We would like to thank the referee for several helpful com-
ments and for pointing out some typos in an earlier draft. We also thank the NSF
for supporting this work through grant DMS 0902145. When we were in graduate
school as students of Jon Rogawski, he introduced us to the trace formula and
encouraged us to work it out explicitly in various situations. At the time, he was
working on a project with Ramakrishnan to compute certain averages of L-series
using the relative trace formula [RR]. The trace formula we develop here can be
viewed as a cross between theirs and the Kuznetsov formula. We dedicate this
paper to the memory of Rogawski, an inspirational teacher and mathematician.

2. PRELIMINARIES

2.1. Orthogonality of matrix coefficients. The proposition below, which has
been attributed to Langlands, will be a key ingredient in what follows.

Proposition 2.1. Let G be a unimodular locally compact group with center Z. Let
(m, V) be an irreducible unitary square integrable representation of G with formal
degree d.. Let w € V be a unit vector, and suppose that the function f(g) =
d(m(g)w,w) is absolutely integrable over G = G/Z. Then for any irreducible
unitary representation (p, W) of G with the same central character as © (but not
necessarily square integrable), the operator p(f) is identically zero on W wunless
p = w. Furthermore, 7(f) is the orthogonal projection operator from V onto Cuw.

Remark: The formal degree d, depends on a choice of Haar measure on G, as does
the operator m(f). We must assume that these measures are the same.

Proof. See Corollary 10.29 of [KL1]. O

2.2. Notation and measure. Given a prime number p and an integer x, we write
zp = ordy(z), so that = [, p®.

Let A, Ag, be the adeles and finite adeles of Q, and henceforth let G = GL(2).
Write G = G/Z, where Z is the center of G. We let Z, = Z(Q,) and Z, = Z(R)
be the respective centers of G(Q,) and G(R). We also set Ko, = SO(2) and
K, = GL2(Z)).

We take Lebesgue measure dr on R, and we use the measure d*y = Tyl on
R*. On Q, and Q; we normalize the Haar measures so that meas(Z,) = 1 and
meas(Zy) = 1 respectively. With these choices, the product measure on A has
the property that meas(Q\A) = 1. In Af, we have meas(Z*) = 1. We normalize
Haar measure on G(Q,) by taking meas(K,) = 1. Likewise in G(Q,) we take
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meas(K,) = 1. On G(Agy,), we give G(Z) the measure 1. We normalize Haar
measure on G(A) so that meas(G(Q)\G(A)) = 7/3. See [KLI] for further details
about this normalization.

We let 8 : A — C* be the nontrivial character given locally by

e 2™ ifp=o00 (z€R
(21) 0 = ) )
ey ifp<oo (x€Qp),

where r,(x) € Q is the p-principal part of x, a number with p-power denominator
characterized up to Z by x € r,(x) + Z,,. The kernel of 8, is Z,,, and 6 is trivial on
QCA.

2.3. Cusp forms. Let k£ be a nonnegative integer. Eventually we will assume
further that k # 1,2. Let N be a positive integer, and let w’ be a Dirichlet
character modulo N satisfying
W'(=1) = (=1,
Define the Hecke congruence subgroups
Do(N) ={(2Y) € SL2(Z)|c € NZ},

Li(N)={(2%) eTo(N)|de 1+ NZ},

and let
1
(2.2) V) = SLa(2) : To(N)] = N[00+ ).
pIN

Consider the space of measurable complex-valued functions u on the complex
upper half-plane H which have the following properties:

(1) For all z € H and all (2%) € ['oy(N)

az+by  —— &
(2.3) u(cz n d) = w'(d)(cz + d)"u(z).
(2) w has finite Petersson norm:

1 / . dx dy
2 2,k

ul|® = —— u(r +1y)|"y" —— < 00
H ” ¢(“) FO(N)\H| ( )| y?

(3) w is holomorphic if k£ > 0.
(4) w is cuspidal: at each cusp of I'y (V) it has a constant term which vanishes
almost everywhere (see e.g. §4.1 of [KL3| for a detailed definition).
We denote this space by S,(N,w’) if k> 0, and by L3(N,w’) if k = 0. The latter
space is infinite-dimensional if nonzero, but it has a basis consisting of Maass forms,
i.e. those elements which are eigenfunctions of the Laplacian A = ,yZ(% + 59—;2).
We write the Laplace eigenvalue as

Au= (1 + ),
and refer to t as the spectral parameter of u. We know that ¢t € R* U i(—%, %),

with the number of v with exceptional (non-real) parameter being finite.
If w is continuous, condition (1) implies that u has a Fourier expansion of the

form ,
u(r +iy) = Z an(u,y)e*™ ",
n#0
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The coefficient a,(u,y) has the well-known form
an (u)e=2mmy ifn,k>0
(2.4) an(u,y) =140 ifk>0,n<0
an(w)y'?Ki(2nlnly) if k=0,

where Kj; is the Bessel function and ¢ is the spectral parameter of u.
The weight k Hecke operator T,, is defined by

kS az+r
Tou(z) = n®H® Z Zw’(a)d_ku(T)’

ad=n h=(
a>0

where a(k) = k—1if k > 0 and (k) = —1/2 if k = 0. If u is a Hecke eigenform, we
denote the eigenvalues by T, u = A\, (u)u. We say that u is a newform if its Hecke
eigenvalue packet {\,(u)},n has an eigenspace that is exactly one-dimensional.

In this case, a;(u) # 0, and we will normalize so that a;(u) = 1. Under this
normalization,
(2.5) an(u) = Ap(u)

for all n. We let
Fe%(N,w'") = {newforms u, with a;(u) = 1}.
We also define T_ju(x+iy) = u(—x+iy). A Maass cusp form is even (resp. odd)
if T_qu=wu (resp. T_1u = —u). If uis even, then in (2.4) we have a_,(u) = a,(u),
while if u is odd, a,(u) = —a_,(u). It is a basic fact that L3(N,w’) has an
orthogonal basis consisting of Maass eigenforms which are also eigenfunctions of
T 1. We let
FL(N,w') = {u € Fg®(N,w')|u is even}.
We define the L-function of u by

L(s,u) = Z an(u)n=?.

This converges absolutely when Re(s) is sufficiently large. We define the completed
L-function by

(2m)~*T(s) L(s, u) E>0
(2.6) A(s,u) = L
T F(%H)F(%)L(s,u) k=0,
where ¢ = 0 or 1 according to whether u is even or odd. It has an analytic

continuation which satisfies a functional equation relating values at s and 1 — s
when k£ =0, and at s and k — s when k£ > 0.

2.4. Adelic cusp forms. Let w be the Hecke character attached to w’ by

(2.7) w:A*=Q (R* xZ*) — Z* — (Z/NZ)* — C*

where the first two arrows are the canonical projections, and the last arrow is w'.
For ¢ > 0, let LY(w) = LY(G(Q)\G(A),w) denote the space of measurable G(Q)-
invariant functions ¢ : G(A) — C which transform under the center by w, and
satisfy fé(Q)\E(A) |#(g)|9dg < co. When q = 2, we let LZ(w) C L*(w) denote the
subspace of cuspidal functions.
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Letting R R
Ki(N)={(2}4) € G(Z)|¢,d -1 € NZ},
we embed Si(N,w’) and L2(N,w’) (taking k = 0 in the latter case) isometrically
into L2(w) by defining
(2.8) Pu(7(goo X gain)) = 5900, 1) (900 (1))
for y(goo X gsin) € G(Q)(G(R)T x K1(N)) = G(A) and
j((g Z),z) = (ad — bc)_l/z(cz +d).

In the k = 0 case, the map u — ¢, is a surjective linear isometry from LZ(N,w’) to

LE(w)KeoxKiN) (the Ko, x K;(N)-invariant vectors), (cf. [KL3], Proposition 4.5).

Lemma 2.2. Let u be a holomorphic Hecke eigenform (k > 0) or a Maass eigen-
form with spectral parameter t (k =0). Then forr € Q,

ar(u)Ky(2rn|r|) ifreZ,k=0
/ Gu((§7))0(rz)de = S e~ a,(u) ifreZT, k>0
Q\A 0 otherwise,

where 0 is the character defined in (2.1). For all s € C,
%A(s,u) if k=0, u is even

Lo sl ey =0 k=0, s odd
QA A(s,u)  if k>0,

k k>2

where A(s,u) is the completed L-function defined in (2.6) and k' = {1 k=0

Each of the above integrals is absolutely convergent.

Proof. For a proof of the first statement, see Corollary 12.4 of [KL1] and Lemma 7.1
of [KL3]. For the second, suppose k = 0. Using the fundamental domain Rt x Z*
for Q*\A*, we have

e o d
/ Gu((Y1))lyl* 1% y:/ u(iy)y* 22,
Q*\A* 0 Yy

The result then follows by a well-known classical computation using the Fourier
expansion (cf. [Go|], pp. 86). The proof when k > 0 is similar; see e.g. Lemma 3.1
of [K1.2]. O

2.5. Newforms. Here we will define a space of adelic newforms, and realize the
orthogonal projection onto it as an integral operator.

We wish to study newforms with certain local behavior. Let N be an integer
multiple of the conductor of w with the property that N, > 2 for all p|N. For each
p|N, let o, be a fixed supercuspidal representation of G(Q,) with central character
wy and conductor p™#. Let & denote the tuple {op},(n-

Under the action of G(A) on L3(w) by right translation, the space decomposes as
a direct sum of irreducible cuspidal representations 7. Given a nonnegative integer
kE#1,2 (ie. k€{0,3,4,5,...}), we define the subspace

(2.9) H(G,w) = P C Li(w),

where 7 ranges through the irreducible cuspidal representations for which:
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(1) mp = oy for all p|N.
(2) mp is unramified for all finite p { N.
(3) 7oo is a spherical principal series representation of G(R) with trivial central
character if & = 0.
(4) 7o is the weight k discrete series representation 7 of G(R) with central
character ()~ sgn(z)" if k> 2.
For each such 7 = @’ Tp, define a vector (the “newform”) w, = ®wy, in the space
of m by taking

unit new vector ([Cal) p|N
unit unramified vector pt Noo
w =
™ unit spherical vector p=o00,k=0

unit lowest weight vector p = o0,k > 2,

where, in almost every unramified case, the unit vector is the one predetermined by
the restricted tensor product. In each case, the vector wy, is unique up to unitary
scaling. Let

(2.10) Ak(6,w) = P Cwx C Hy(5,w).

This corresponds to a classical space of newforms of level N on the upper half-plane.
Letting ¢, € L3(w) denote the function defined by w, the associated cusp form on
H is given by

(2.11) u(e +iy) =y 26 ((§7) o X 1an) (v >0).

This is the inverse of the association (2.8]), i.e., ¢, = ¢.
For p|N, define a function f, : G(Q,) — C by

(2.12) folg) = dp<0p(g)w0paw0p> (pIN),

where d,, is the formal degree of the supercuspidal representation o, relative to
our choice of Haar measure on G(Q,), and the inner product is G(Q,)-invariant.
Likewise, if p = co and k > 2 we take

(2.13) foolg) = di(mec(Qwn ., wr) (k> 2),

where dj, is the formal degree of the discrete series representation ms, = 7. The
latter function is supported on the subgroup

GR)" = {g € G(R)| det(g) > 0}.
(We rule out k& = 2 because the function (2.13)) is integrable precisely when k& > 2,
and integrability is required by Proposition )
For p { Noo, we assume that f, is a bi-Kp-invariant function on G(Q,) with

compact support modulo the center, and that for all but finitely many such p,
fp = ¢p is the function supported on Z, K, given by

(2.14) Op(zK) = wp(z) (z € Z, k € K,).
Likewise if p = co and k = 0, we take
(2.15) fo €CE(GR)T//Ks) (ki =0).

The latter is the space of smooth functions on G(R)* which are bi-invariant under
Z(R)K+ and have compact support modulo Z(R). Such a function enables us to
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project onto the K -invariant space of L?(w), which contains the Maass forms of
weight k = 0.

Proposition 2.3. With local functions as above, let f = ] f, be the associated
function on G(A). Let R(f) be the operator on L*(w) defined by

R(f)é(x) = / F(9)é(zg)dy.

G(A)

Then R(f) annihilates LE(w)*. In fact, it factors through the orthogonal projection
of L*(w) onto Ai(c,w), and acts diagonally on the latter space, the vectors wy
being eigenvectors.

Proof. For a proof of the first statement, see Proposition 1.1 of Rogawski’s article
[Rog]. Now suppose v € LZ(w). Since the latter space is a direct sum of cuspidal
representations, we may assume that v € V. for some 7 = ®'m,. Likewise, we may
assume that v = ®v, is a pure tensor. For the purposes of this proof, let G’ denote
the restricted direct product G' = H;m G(Qp). Decompose 7 as

T = Teo ®7T/®®7Tp,
pIN
where 7’ is a representation of G’, and write v = v, @ V' ® ®p‘ ~ Up accordingly.
Then (e.g. by Proposition 13.17 of [KL1])
R(f)o = Too(foo )00 @ ' ()0 © Q) (£3)0p-
pIN

If p|N, or p = 0o and k > 2, then by Proposition the above vanishes unless
7, = 0p (resp. mg), and in the latter case m,(f,) is the orthogonal projection
onto Cwy,. Because f is bi-invariant under [],n Kp, 7'(f’) has its image in the
space Cw’ = ®;ﬁN Cwy,, C Vs, and it annihilates the orthogonal complement of
this subspace (see e.g. Lemma 3.10 of [KL3]). The analogous statement holds for
Too(foo) if k = 0 for the same reasons. It follows that R(f) annihilates A (7,w)*,
and acts by scalars on the vectors w, € Ap(c,w). O

2.6. Twisting. Let D be a positive integer with ged(D,N) = 1, and let x be a
primitive Dirichlet character modulo D. Given a cusp form

u(z) = Z an(u, y)e?™ne
n#0
in Si(N,w') or LE(N,w'), its twist by x is the form
ux(2) = 37 x(m)an ()6,
n#0
which belongs to Si(D?N,¥?w') or LE(D?N,¥?w'). If u is a Maass form with
spectral parameter ¢, then so is u,. In this section we will define a function fX on
G(Asy) for which R(fX) encodes the twisting operation adelically. See §3 of [JK]

for more detail. Beware that the nebentypus ¢ in [JK| plays the role of w’ here,
since we have a complex conjugate in (2.3) which is not present in [JK].
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We let x* : A* — C* be the Hecke character attached to y as in (but using
D in place of N)E| We let x; be the local component of x*. It is a character of Q,
and when p|D it can be viewed as a primitive character of the group (Z/pP»Z)*.
The Gauss sum attached to x is

)= >, x(m)em/P.
me(Z/DZ)*
If we set
(2‘16) T(X)p = Xp(pgp )T(Xp)7

then 7(x) = [,)p T(x)p (cf. [JK], (3.10)).
For each prime p|D, we define a local test function fX : G(Q,) — C by

wp (2) xp(m) : _ 1 - D *
f;<<x>={m if 2 = zg for 2 € Z, and g € (§ ~"}/7 ) K, for m € (Z,/DZy)

0 otherwise.

For the primes p|INV, we take fX to be the function supported on Z,K;(N), given
by

B b
meas(K,(N),)  wp(z)’
where 1, (N) = [K, : K1(N),] = p™* (1 + %) Lastly, for pf DN, we take fX to be
the function defined in (2.14). Now let fX =]

(2.17) fX(zk) =

p<oo /X, and define the operator

(2.18) R(f)é(x) = / @dleg)dg (b€ Lw)).

G(Afin)
We call this the twisting operator of level N attached to x.

Proposition 2.4. Fory € Rt x AR Q*\A* and u a holomorphic or Maass cusp
form of level N and nebentypus w’,

R(fx)¢u((y 1)) = X*(y)¢ux((y 1))

Proof. See Proposition 3.2 of [JK]. That result is stated for holomorphic cusp
forms, but the proof carries over verbatim to the case of Maass forms. O

Given two functions fi, fo € L*(G(Agy,),w), we define their convolution by

fi % fala) = / £1(9) fag~ ) dg = / fi(zg™) falg)dg.

G(Aftin) G(Afin)

Then f; * fo € L'(G(Agqy), ), and it is straightforward to show that R(f; * fo) =
R(f1)R(f2) as operators on L?(w).

Proposition 2.5. Let f = foo X fan be a function on G(A) of the type defined in
Section with the property that for all p|D, f, is the function (2.14). Then
(2.19) R(foo x (f** fan)) = R(fX)R(f).

As a result, the above operator factors through the orthogonal projection of L*(w)

onto Ax(c,w) by Proposition[2.3

L Thus we use two sets of notation: w’ and x are Dirichlet characters and w, x* are the associated
Hecke characters. This was done in order to conform to notation in papers we reference.
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Proof. As mentioned above, R(fX x fsn) = R(fX)R(ffin). The local components of
the convolution are given as follows:

fx ifp|D

fp ifptD.

Indeed, if p { DN, then the assertion is immediate because f, is bi-K,-invariant and

JX is the identity element of the local Hecke algebra of bi-K),-invariant functions.
Similarly, the case p|D follows easily by the right K-invariance of fX and our

assumption that f, is given by (2.14)). If p|N, then for k € K;(N),, by (2.12)) we
p p 18 8 Y p p> PY

have
fo(k™1a) = dy(op(2)we,, 0p(F)wo, ) = fp(),
since wg, is fixed by K1(N),. Thus by (2.17),

X% fo) = /7 LX) (6 ) dk = £, () /7 FX(R)dE = fo(2),

Ki(N), Ki(N),

(2.20) (fx*fﬁn)p:fg*fp: {

as claimed.

In view of , we may apply Proposition to both sides of the proposed
equality to see that they each vanish on L2(w):. Therefore it suffices to
show that they agree on L3(w). Let (7, V) be a cuspidal representation in L3(w).
Given v = vy ® vy € Vi, by we have

Bpyo= [ Pomtsxopdg= [ ves Plomtodo

G(Atin)

= Vo ® ﬂ-ﬁn(fx)vﬁn-
For details justifying the movement of the tensor outside the integral, see Lemma
13.16 of [KLI]. Applying the above identity with R(f)v in place of v, the result
follows:

R(fX)R(f)’U = 7roo(foo)voo X ’/Tﬁn(fx)ﬂ—ﬁn(fﬁn)vﬁn == ’/Too(foo)voo ® Wﬁn(fx * fﬁn)vﬁn

= R(foo x (f** fan))v.
For a justification of the last step, see e.g. Proposition 13.17 of [KLI]. (]

2.7. A particular choice of function. The above discussion is rather general,
and we will now define a very specific function f as in §2.5] designed to project
onto the newforms of cubic level and then act as a Hecke operator. For our main
test function in the trace formula, we will then take F' = fo, X (fX * fan), with fX
a twisting operator defined as above.

Henceforth we take N > 1 to be a square-free integer. We make the following

assumption in all that follows:
(**) W' is a Dirichlet character of modulus N* whose conductor divides N.

As before, we let w be the associated Hecke character.

For each p|N, the conductor of w, divides p. Therefore by Proposition 7.2 of
[KL4], there are exactly 2(p — 1) irreducible admissible representations of G(Q,) of
conductor p® and central character wp, up to isomorphism. These are the simple
supercuspidal representations, which are parametrized naturally by the pairs (¢, ()
with ¢t € (Z/pZ)* and ¢ € C satisfying (?* = w,(tp). The construction depends

on the choice of a nontrivial character of Z/pZ, which we fix to be x — 6,().
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Let 0 = o0y be the supercuspidal representation indexed by (¢,¢). It is defined
precisely in [KL4], but all that we need here is the formula for its matrix coefficient
fo = d0<0(g)w0, w0>7

where the formal degree d,, is taken relative to the Haar measure for which meas(K,)
is 1, and w, is a unit new vector as before. By Theorem 7.1 of [KL4],

(2.21) fo=H+1,

where f7 and f3 have disjoint support, and for z € Z,,, are given by Kloosterman
sums:

p+1 —bw — Lq~!
(2.22 £7(2g) = o,(— o
) 7 2w, (2) wG(Zz/:pZ)* p( P )
_(a bpt z, 3z
forg_(cp2 Pd )e (p%p 1er;p),and
(p+1) —fw— Gu!
(2.23) f3(29) = 5 ——+ wp(w)ly | —+————
2 2w, (2d) 'LUG(ZZ/pZ)* P p( P )

- zZ, Lz . . .
for g = (acp d”b 2) € (pzp; Pz'zpp ) The function f° vanishes outside the set

x -1 —2r7x
o (pQZi) . pZpr> Uz (pzzpz ’ sz ,,) '
Fix an integer n > 0 with ged(n, DN) = 1. Let
M(n), = {(‘C‘ g) € My(Zyp)|ad — be € nZy}.
Define, for p|n, the local Hecke operator f;} : G(Q,) — C, supported on Z, M (n),,
by
(2.24) f;L(Zg) = Wp(z) (z € Zp, g € M(”)p)'

This plays the role of the classical Hecke operator Tpns.
Finally, we let fo be the matrix coefficient (2.13)) if & > 2, or a spherical function

as in (2.15)) if £ = 0.
With these choices, we define the global function f: G(A) — C by

F=te < TIO_ I £ 11 20
pIN (t,0) pln pinN

where, in the case p { nN, ¢, is the unramified function supported on Z, K, defined
in (2.14). We remark that at the places p|N,

Z fore = Z f{"mé

(t,) (t,0)

since from the definition it follows easily that for each ¢, 3" + fo" ¢ = 0.
Nevertheless, we will compute the contribution of f§ to the local orbital integrals
in the trace formula that follows, since these do not vanish individually and may
be of interest in other applications.

The function f defined above is a finite sum of functions of the type considered
in Thus any new vector w, belonging to the space

(2.25) Ap(N?,w) = P Ak (5, w)
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is an eigenvector of R(f). Here, & runs through all tuples {o}, x of simple super-
cuspidal representations (o, = oy ¢) with central character w,, and A (7,w) is the

space defined in (2.10).

Proposition 2.6. Given a new vector w, € Ay(N3,w), let u be the associated
newform. Then R(f)wy = Af(u)wy, for

) ik > 2
(2.26) Ap(u) = {n1/2h(t)>\n(U) ifk=0,

where A\, (u) is the eigenvalue of the classical Hecke operator T,, acting on u, and
in the k = 0 case, t is the spectral parameter of u and h(t) is the Selberg transform

of feo (defined in below).
Proof. We may write
R(f)wr = Moo (foo)Weo @ 7' (f)w' ® mp(fp)wp ® 7y (fp)wp,
pIN pln

where the ’ indicates the contribution of the primes p { Nnoo as in the proof of
Proposition If p|N, then

T (fp)wp = Zﬁp(fg)wp = Wp

by Proposition @ since exactly one of the representations ¢ is isomorphic to .
Likewise if p { nIN, then m,(f,)w, = mp(¢p)w, = w, by the definition of ¢,. Hence

R(f)wﬂ = ﬂ-oo(foo)woo ® w/ ® Wp ®7Tp(fp)wp.

p|N pln

(Fao)uw Woo if k > 2 (by Prop. above)
Tool\Joo JWoo =
h(t)we if k=0 (by Prop. 3.9 of [KL3]).

From the product over the places p|n, we get the scalar v/nA,(u) if & = 0 (see
Lemma 4.6 of [KL3]), and n'~%/2),,(u) if k > 2 (see Proposition 13.6 of [KL1]). O

To incorporate twisting, we consider the function
(227)  F=fuox (5 fam) = foo x [JO_ 0TI £ TT ¢
pIN (t,0) p|D  pln  pinDN

where fX is the twisting operator of level N2 as defined in Section (where the
level was denoted by N rather than N? used here). The second equality in
follows from . We will use the above as our test function in the trace formula.
The kernel of the operator R(F) is

(2.28) K(z,y)= Y  F 'yy).
7eG(Q)
Proposition 2.7. Let F°“(N3,w') be the set of newforms of weight k, level N3

and central character w’'. Then the above kernel function has the spectral form

(2.29) Ky = 3 A (W R(FX) ¢ () buly)

2
werr e Tl
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for Ap(u) as in (2.26). The kernel function is continuous on G(A) x G(A) and the
above equality is valid for all points (x,y).

Proof. First, note that by Propositions [2.5] and
R(F)$u = Ap(u)R(f*)du-
Therefore the RHS of (2.29)) is the same as

R(F)¢p(x

where ¢ ranges through an orthogonal basis for A (N3, w) (defined in ) In
fact we may even allow ¢ to range over an orthogonal basis for the whole space
L?(w) since R(F) annihilates Ay (N®,w)t. The restriction of R(F) to the cuspidal
subspace is well-known to be Hilbert-Schmidt, and since R(F) vanishes on L2(w)*
R(F) is itself Hilbert-Schmidt. (In fact it has finite rank when k > 2, but not
when k£ = 0.) Hence its kernel is equal to , proving that holds almost
everywhere.

The continuity of is trivial when k = 0, since in that case the defining
sum is locally finite, F' having compact support modulo the center and G(Q) being
discrete and closed in G(A). When k > 2, f., is not compactly supported, so the
continuity is not trivial, but a proof is given in Proposition 18.4 of [KLI].

On the other hand, the continuity of the RHS of is trivial when k > 2 since
in that case it is a finite sum of continuous functions. When k = 0, a proof is given
in Corollary 6.12 of [KL3]. In all cases, it follows that is valid everywhere. [

3. A RELATIVE TRACE FORMULA

Our goal is to compute the relative trace formula given by the integral

oo [ () (o )l

where &/ =kifk>2and ¥ =1if k= 0.
On the spectral side we evaluate the double integral using (2.29).

Proposition 3.1. The integral

/ *\A* /Q\A Z

weFpew (N3 w')

AW R(X)u((Y1)bu((§%))

[

0(rz) x*(y)y|* %' /2| da d*y

is convergent for all s € C when k > 2, and in some right half-plane when k = 0.
Hence for such s, (3.1) is equal to

(3.2) Z Ap(w)ar (W)A(s, u, x) P.(u)

ue]:gew(NS,w/) H/u’”2

sKq(2n|r]) if k=0 and u is even
where \¢(u) is given in (2.26) and Py(u) =< 0 if k=0 and u is odd
g2 if k>0,



14 ANDREW KNIGHTLY AND CHARLES LI

Proof. By Proposition [2.4] we have
R(fx)¢u((y 1)) = X*(y)¢ux((y 1))

for all y € RT x AR Q*\A*. Therefore, whenever the double integral in the
statement of the proposition is convergent, (3.1]) is equal to

A1) y s—k'/2 g% o (LN (ra)da
2. /Q*\A* Su (" 1))ly"™"/2d y/Q\Asbu((Ol))o( )dz,

ue]:]?,ew(N37w/) ||UH2

which is equal to by Lemma Each of the above integrals is absolutely
convergent, so the first assertion of the proposition is immediate when k& > 2 since
the sum over w is finite in that case. For the non-holomorphic case, we refer to
Proposition [5.1] below. O

For the geometric side, we use the expression (2.28]) and formally unfold (3.1]) to
obtain

s X, P )a (o 1Rl P,

where & ranges over M (Q)\G(Q)/N(Q). (See §7 of [JK] for details.) By the Bruhat
decomposition, the elements

Lo (995, {(1")]eeqQ}

form a set of representatives for these double cosets.

Proposition 3.2. The convergence

> |/ \F<(y_l 1)6(5 ”f))eo«x)x*<y>|y|s—k//2\dxd*y<oo

is valid for all s when k = 0, and for 1 < Re(s) < k — 1 when k > 2. Hence the
spectral side (3.2)) is equal to the geometric side (3.3) when 1 < Re(s) < k —1 if
k > 2, and when Re(s) is sufficiently large if k = 0.

Proof. We will show in the proof of Proposition below that when k = 0, the
integrand vanishes identically for all but finitely many 4. Since F' also has compact
support modulo the center in this case, the remaining integrals are absolutely con-
vergent. When k > 2, the proof is essentially identical to that of Proposition 7.1 of
[JK], in view of the proof of Proposition below. a

We let Is5(s) denote the double integral attached to § in . This orbital
integral can be computed locally. The archimedean integral in the case k£ = 0 will
be considered in §5|below. In the holomorphic case k > 2, the archimedean orbital
integral was computed in [KL2] and [JK]. The non-archimedean local calculations
at places p{ N were carried out in [JK]. Thus it remains here to compute the local

integrals at places p|N. The results will be given in (3.5, (3.7) and (3.10) below.

3.1. Orbital integrals for p|N. To simplify notation in this section, we will write
k rather than k’. Suppose p|N, and let ¢ = 0y ¢ be a supercuspidal representation
of conductor p* and central character w,. Define

J6(57fg) = J5(S7ff) +J5(57f§)7
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as in (2.21), where for i = 1,2,

:/;/pf’g((y 1) 0 <(1) T>)pr(y)ly’;/2‘sdxd*y.

Then replacing y by y~! in (3.3), we see that
S)p = Z J5 (s)

Proposition 3.3. Let 6 =1, so that

W= [ el B

Then
p(p+1)
(3.0 Js 1) = s, gy =42 At
0 if plr,
and
3 .
p’—p ifptr
3.5 I =
(3:5) 1(S)p {0 otherwise.

Proof. By -, the matrix (0 1 ) never belongs to Supp(f5), so Ji(s, f7) =
* —1

Ji(s, 7). Note that (§“”) € Supp(f{) = Z, (Zop p 1Zp) if and only if y € Zy

and z € p*IZp. We substitute u = y € Z;, and replace yx by p~!

Then dx becomes p dx, and

/ L pf”ﬂ)wp(r“: Jdad*u
:p(p2 / / mlt)lx)dxd*u.

we(Z/pZ)*
The integral over Z,, is equal to

—w —ru~t 1 ifu=—rw!
/ Gp(( w—ru )x)dx:{ if u .rw mod p
z, p

0 otherwise.

Z, S0 NOW T € Zy.

In particular, this vanishes if p|r. Assuming p{r,
Ji(s, fT) = (p2 ) Z / p(pT) meas(Z;),
1ypZ,

we(z/pz)r " AP
which proves (3.4). The number of pairs (¢, () is 2(p—1). Since (3.4)) is independent
of o (the parameters (t, () not appearing in (3.4))),

Il(S)P = 2(p - 1)‘]1(57 fﬂ),
and (3.5)) follows. O
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Proposition 3.4. Let § = ( ), so that

Js(s o 1o ( ))HP(rx)dxXp(y)y|§/2_sd*y.
Then
(P2 p(p + Vwp(—rp?)
(36)  Jals, £7) = Jo(s, f5) = 200 (7) yoir
0 otherwise,
and
(3.7) I5(s)p = 0.

Proof. By (2:22)), the matrix ($ 7¥) never belongs to Supp(f{), so Js(s, f7) =
Js(s, f§). Note that (V ~¥) € Supp(f§) if and only if

(0 —py>€<zp p‘ZZ;).
p pr vZ, Z,

In this case, we may write y = —p3u for u € Z;,, and ' = px € Z,. Then
dx’ = p~'dx, and dropping the ’ from the notation, we have

_p/; /Zp fé’((p1 pl) (2 p;U>)ep(_pm)dxxp(p_;g)(pg)k/2—sd*u

tx

_ (ps)k/zisp(erl)pr(p) T ﬁ PP —Trx " %
B Z wp()/*p()/ep(p)ap( Ydx d*u

2x(P) we(Z/pZ)* » Zy p
by ([2.23)). Replacing u by (—uw)~?!, the above is
3\k/2—s 1
= (r°) p(p—; )Cwp(p) Z wp(w)/ wp(—uw / 0, ( )da? d*u
20(p?) we (2/p2)*

Observe that w is eliminated, and the sum over w contributes p — 1. Furthermore,

/Hp((tupr)o:)dm:{l ifuetilr-ﬁ—pr
zZ

b 0 otherwise.

In particular, it vanishes if p|r. Assuming p tr,

(P*)*2~*p(p + 1)Cwp(p)
Js(s, f7) = (r-1) wp(—u)d™u
2X;D(p3) t=lr+pZ, g
3\k/2—s 1
_ (@) p(zH; )pr(p)wI)(_t—l,r).
2xp(P%)
Equality (3.6)) now follows, using the fact that @J”((';) = C::((;i)) = 2 (Cp 2 For fixed

t, if we sum over +(, we get 0. It follows that I5(s), =Y., Js(s, f7) =0. O
Proposition 3.5. For a € Q*, let 6, = (‘11 ’01 ), so that

Bt = [ (Y mEe
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Then Js, (s, f{) vanishes unless a € p*Z, and ptr. In this case, writing a = p* ay
for ag € Z; N Q*, we have

a2 Fp(p + Dewp (™) = ta 7,
- O0p(— — =) ifao=1 mod
(38)  Jon(s f) = 2, (@) 2 oo y
0 otherwise.

The integral Js, (s, f§) vanishes unless a € p*Z,. For such a,
3\k/2—s 2
P p(p + Dwy(—pr ta )
o (P°) ( 3),,( )ep(——g) ot
(3.9) Jo, (5, f5) = 2xp(P°)¢ rp
0 otherwise.

Finally, Is, (s), vanishes unless p t r and a = p* aqg for a, > 2 and a9 = 1 mod pZ,.
If these conditions are satisfied, then
(3.10)
lal2* = p(p + Dwp (p)0p(— £
Is, (S)P = 2
Xp(a?)

Proof. We start by computing Js, (s, f{). From (2.22)) we see that the determinant
of any matrix in the support of f{ is of the form (p™)?u for some m € Z and u € Zy
(the square factor coming from the center). Since det(y 1 )(5,1((1) ﬂf) =y, it follows

that we may assume y = p% for some £ € Z and u € Zy, and that

p* ya ylza—1)\ p~tau p‘eu(xa—l) c /9 p‘lzp
pt 1 T —\ pt pla p*Z, 1+pZ,)"

This implies a, = ¢ > 2, and that p‘z = 1 + pa’ for some 2’ € Z,. Then p~‘dzx =
p~tdx’. Making this substitution, we find that Js, (s, f{) is equal to

=1y (pf) (p2f)k/2—s agu  Su x Nag — o r(4pz) )\ g 1
(p )p(@% ) //Z ff((;e pr (1 +pa')ao 1)))ep(<+g’>)dxdu.

)Ap(a), for Ap(a) = {p -1, ap,>2

-1, ap = 2.

Xp 1+ pxl p
In order that the integrand be nonzero, we need p~*((1+ pa')ag — 1) € p~1Z,, i.e.
1+ p2’ =ay " mod p*~'Z,.
This is only possible if ag = 1 mod p. Assuming the latter condition holds, we set
1+ p2 = ao_l +pt~ 12" so p~tda’ = p'~tdz”. Then, writing x in place of z”, the
double integral becomes

oo (p0) (p2E)k/2—5 -1 e .
Sy g I T O e
Xp(p%) 5 J 2y

P2 Pt a4+ piTle

After replacing u by uay ! this becomes

)2 *p(p + Dy () —_
2xp(p*) P ptag
_ 02 1 _
" Z / / 0,( zuw — tp* 2 (uw) 10, rac)dx Ju
we@pz) % T2 P P
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Replacing u by —uw ™!, we eliminate w, and the sum contributes a factor of (p—1).
The integral over x is then

/ ep((u—r)x)dx: 1 iqurlerZp
Z, D 0 otherwise.

In particular, it vanishes if p|r. Assuming p t r, the sum over w of the double
integral thus becomes
tpé—Qu—l . tp
R
r+pZ, P D

{—2

Hence

20\k/2—s (4 0—2

- D pp+ 1)wp(p tp r
Jéa(svfl):( ) ( 20 ) 10( )GP( -
2x,(p*) ] @

which establishes (3.8]).
Now consider

B = | (e ) Al

By (2.23), the integrand is nonzero precisely when

(p p) (yla y(xax— 1)) _ (p]yja py(w;x— 1)) c <pZZp; p‘zzpzi)

Taking the determinant, this says in particular that p%y € p—lz;;, SO we may write
Y= p% for u € Zj. Setting pr = 2/, p~tdx = do’,

J(sa(s,f;):W/*/zp f;((?f #(Z”)w,ﬂ(‘;g”)dxd*u.

From the upper left entry, the integrand is nonzero only if a, > 2. Assuming the

latter, we also have — 1 € Z;, so the upper right entry belongs to p_QZ; as

required. Hence by ([2.23)), the above is
(P*)*2=*p(p + 1)Cwp(p) —— [ ——, , uaw
- 22w [ -

2Xp(p3) we(Z/pZ)* P p3

. —tauN(Ee )t —rx i}
| @, Z S

P
b
Note that wy(%* — 1) = wy(—1) since p?|a. For the same reason,

—txufl(% — 1)~ tw™! tu"tw

O ( ) = 0p( )-

p p
Therefore the above integral over Z,, equals

w,,(fl)/ gp((frthu*lwfl)x)dx: wp(—1) ifuet.rflwfl_i_pzp
Zo p 0 otherwise.

In particular, Js, (s, f§) = 0 if plr. Assuming p{r, Js, (s, f§) equals

(P*)*2~*p(p + 1)w,(—p) T uaw .
wp(w) wp(u)ep(_ )d u
2xn(P°) we(Z/p2)" /
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(P*)*2*p(p + 1)¢wp(—p) tr-la, 1
= wp(w) wy(tr—lw=1)0,(— —
20 () we(zz/;z)* () i O
_ )P p(p 4+ D¢wp(—p)——5,  tr'a
= 3 wp(tr=1)0p(=——=—).
2xp(p°) p
Equation (3.9) follows upon using C:)u:((g) = %11)2

Since Js, (s, f5 ) + Js, (s, f " 7¢) = 0, we see that

_aly o+ Dwp()r

Is,(s)p = Z Js. (s, 17) Yo (a2) ‘gp(_a)Ap(a)
(£:0) b
assuming p{r, a € pQZp7 and ag = 1 mod p, where
tpe—2 p—1 ifa,>2
Mlo)= 3, 6= {—1 if 0, — 2 -
te(z/pZ)* L

3.2. Summary of local results. We summarize here the contribution of § = 1,

which turns out to be the main term. By (7.7) and (7.8) of [JK], and (3.5)) above,
we have

(3.11)
Xp(T) if p|D
pp+1)(p—1) if p| N
min(rp,np)
K o d 2d .
L(s)y, = 4@ X 0" B x(r) ifpln
dp=0

2k71(2ﬂ.,r.)k7571 .
o2 e if p= oo,k > 2
1 if pt NDnoo.

The local integrals for § = (? _01) are irrelevant, since those at places dividing

N vanish by (3.7).
We will discuss the local integrals for § = (" *1) in & below.

10
4. RESULTS FOR HOLOMORPHIC CUSP FORMS
In this section, we will prove the following.

Theorem 4.1. Let r,n,D, N,k € Z* with N square-free, k > 2, (rn,ND) = 1,
and (D,N) = 1. Let w' be a Dirichlet character modulo N, with w'(—1) = (—1),
and let x be a primitive Dirichlet character modulo D. Then for all s = o + iT in
the strip 1l <o <k —1,

A ()it (@) A (5,11, X)
(4.1) 2 SN ul?

=F+F,
w€Few (N3 ,w')

where

B 2k =1(2mrn)k—s—1

e Ol | (R DR P

pIN dl(n,r)

)

RE
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is the main term, and the error term E (an infinite series involving confluent
hypergeometric functions) satisfies

(4mrn)* =1 o(D) ged(r,n) B(o,k — o) [T, v (1 = )
N20Do—F+3 () — 2)!

for the Beta function B(z,y) = Flf(g;a?igjz’)) <1 and Euler’s p-function.

Remark: If (r, N) > 1, then vanishes. This is a consequence of the fact that
the local representations at p|N are supercuspidal, which implies that a,(u) = 0
(see e.g. the proof of Corollary 45 of [GHLIO]) and hence a,(u) = 0. This is
reflected on the geometric side in (3.5)).

The L-functions in Theorem are normalized so that the central point is g
In order to free s from dependence on k we shift the variable so that the critical
strip becomes [0, 1] in the following.

B < 2cosh(F)¢(k — 0)((0)

Corollary 4.2. Suppose for simplicity that (n,r) = 1. Then for any point s in the
critical strip 0 < Re(s) < 1, the sum

A (w)ar (WA (s + 554 u, )
2 (N?)ul?

is nonzero as long as N + k is sufficiently large.

Proof. See the proof of Corollary below. O

u€Fre% (N3 ,w')

As another corollary, we can show that the central values L(%7 h, x) satisfy the
Lindelof hypothesis on average as k + N — oo when x is real and w’ is trivial.
(Under these conditions, the central value is a nonnegative real number, [Gul.)

Corollary 4.3. Suppose that W' is trivial and x is real. Then for k > 2,

> Lk ux) <p (BN?)'FE
uwEFTew (N3)

Proof. The proof is identical to that of Corollary 1.3 of [JK]. O

Remark: This is the same bound we would get by assuming the Lindel6f hypothe-
sis L(%,u, x) < (D?kN®)%, in view of the fact that |[Fpew(N3)| ~ ELynew(N3),
where (N?)1=¢ < ¢ (N?3) < N3 ([Sex], (60) on p. 86).

Returning to the case of general w’ and x, let (A, (s, x),a,)"" denote the sum
in (4.1). We can regard this as an inner product of elements of the dual space of
Sk(N?3,w")™. One can also define (A, (s, x),a,) in the same way, but where the
sum is taken over an orthogonal basis for the full space Si(N?3,w’). It is interesting
to compare the two.

k+1

Corollary 4.4. Let s belong to the critical strip *5 < Re(s) < &L,

that (n,r) = 1. Then with notation as above, we have
(An(s,x), ar)"" 1

~ ]_ _ =
ooy~ 1103

and suppose

as N +k — oo.
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Remark: From this we can observe two extremes in behavior. If N = p is prime, and
p — 00, the above tends to 1, so the contribution of oldforms begomes negligible.
This agrees with a prediction of Ellenberg ([El], Remark 3.11). On the other hand,
if we take N to be the product of the first £ primes not dividing D and let £ — oo,
the above goes to 0 and the contribution of the newforms becomes negligible.

Proof. In Theorem 1.1 of [JK], it is proven that

<An(3aX)7ar> =F + E/,

F
where F/ = ——————— and |FE’| satisfies a bound similar to the one given for

Hp|N(1 - %) ’
|E| in the above theorem, but without the factor of [, (1 — %)7 and with N37 in
the denominator rather than N29. In the last line of the paper [JK], it is shown
using Stirling’s approximation that for s = & + ¢ + 7 with |5 < 1,
E' (4D7rne)*/?
Fri 7 (N3 s
where the implied constant depends on §, D, R, n, 7. Clearly the above goes to 0 as
N +k — oo. The same bound holds for |£|, but with N? in place of N3, since the
extra factor of H(l - %) in the numerator and denominator cancels out. Likewise

’ E (4Dmrne)*/?

1 - = " 7.
DN )Tki*l
Now consider the quotient

1-1 _(4Dmrne)t /2
T I e i

< n( ) T> 7F/+El B 1+% B 140 (4D7r7"ne)k/2
(Ng) s

The corollary now follows easily. (]

4.1. Proof of Theorem In the holomorphic case, the spectral side (3.2))
becomes

nl=k/2 An(w)ay(u)
o AnlU)ar () o .
627rr Z ||U||2 (S,U,X)
wE€F e (N3 )
By the local calculation (3.7]), the geometric side has the form
+ ) I, (s)
acQ*

As is typical, the identity term I;(s) is the dominant term as N + k — oco. Multi-
plying the local results (3.11) together, when k > 2 (so k' = k) we obtain:

6271'7“”14:/271 2k71(27rrn)k75 1

Dp-1
N (5] pr+p+ D I S M)

d|(r,n)
This is the leading term of (4.1)).
Theorem now follows immediately from the following proposition involving
the remaining orbital integrals.
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Proposition 4.5. For §, = (’f Bl) with a € Q¥, the orbital integral I(; ( ) is

absolutely convergent on the strip 0 < o < k. It vanishes unless a = nD for
beZ—{0}. Whens =oc+ir forl < o < k—1, the sum ZaeQ* J(s) is
absolutely convergent, and

27rrnk/2—1

‘ 3 15, (s)]

oV .

_ (rrm) (D) ged(r, B0,k — o) Ty (1~ 2
- N2 po—k+3 (k—2)!

2 cosh(%F)((k — 0)¢(0).

Using the results of [JK] and (3.10)) above, one can actually give a rather explicit
formula for the sum of the Is,(s) as an infinite series. However, this involves a lot
of bookkeeping and seems of limited value, so we will just present the bound. First,

2
by (B.10), we note that for p|N, I, (s), vanishes unless a = 22 € N?Z,,, and
by
(4.2) |Is, ()] < IN*B27 *p(p+1)(p—1) < IN*[27 Fpp+1)(p—1) D Ip™ ;77"
dp=0

Now suppose p{ Noo. Then the value of I5,(s), is not quite stated explicitly in

[JK], but a closely related integral is given. Start with

:/*/pfp(<y1a y(xax— D))dexp(y)lylﬁm_sd*y.

A matrix belongs to the support of f, only if its determinant is of the form (p™)*nu

for some m € Z and u € Z;. This can be seen from (for p|n), from the

expression for fX three lines above if p|D, and from if pt nDNoo.

(In the latter two cases, n is a unit.) The determinant of the matrix in the above

integral is v, so the integrand vanishes unless y € p~2d» nZy for some d,, € Z. Write
NZb

a = 27, where (for now) b € Q*. It will be convenient to write y = weaye for

d=p* and u € Z;,. Then the above becomes

X 1 nu Nizb nu (xN?b -1 «
> e L, e e ™ (Fp #n, Y )atai
dp€Z 12 1P

Since the second matrix has determinant un € nZjy, all entries must lie in Z,, for
the integrand to be nonzero. In particular, d, > 0. We may substitute 2’ = dN 2z,
so that dz’ = |dN?|, dx = |d|, dz. Using the fact that the central character w, is
unramified, we obtain
X ( Tz )W by naw N\ %
Z P\N ds k/z; | | 1/ / £( ( deZDa: de))ep(]\t;”d)dxxp(u)d U.
dp>0 | dz p
The latter double integral coincides with (8.4) of [JK], but with N where we have

N2, Tt is computed explicitly in §8.1-8.2 of [JK|. In particular, it vanishes unless
0 < d, < by, proving the assertion in Proposition [£.5] that the global integral

vanishes unless a = N b for nonzero b € Z. Multiplying the coefficient by the
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double integral, whose value is given in (8.7), (8.8), and (8.12) of [JK], we find

D b
(4.3) 175, (), Z do[20=F (p|D)
a7 _—
(4.4) s, (sl < T ST s Z Ipe|? (pt DNoo).

(For the latter, we have used the fact that in [JK], ged(%, Nd)| ged(r, Dn).) Multi-
plying the local bounds . 4.4]) together, we have

o k/2

cd(r,n) 1
(NQ;DZEJ' kﬁ- (pr+1 »ZW

dlb

45)  |Ls, ()| < =

For the archimedean part, by (8.15) of [JK] we have

_ (47rr)k_1(N2)U_kb3—kei7rs/2
(4.6) L5, (8)o0| = (k —2)l(nD)o—kezar

where b = e¢~™5|a|® if b < 0, and for Re(k) > Re(s) > 0,

1 f1 (83 ke —2miznDy

)

1
1f1(s,k;w) = B(s, k — s)1F1(s; kyw) = / eTrsTH1 — )k~ ldx
0

(IS, §3.1). Noting that |, f1(s; k; —25E2R)| < [ 27~} (1—a)k~°~1dz = B(o, k—0),
and that

+ 1)( Hp-1 1
HprEf( _pr+ = ) _H<1_§)7
pIN
we multiply (4.5) by (4.6) to get
e rpk/2-1 (47rrn)k71g0(D)67”/2 & ged(r,n)
_ < 5 .
s a0 < Sy L= B k-0 3 S

pIN d|b

Now we need to bound the sum over b € Z — {0}. Write b = *cd for ¢,d > 0,
and group the ¢, —c terms together, so that

|Csfk| + |(_C)sfk| — Cofk + ‘(efifr)sfkcsflw _ Coflc(l _’_671'7').
Noting that e=""/?(1 4 €™") = 2 cosh(%F), we obtain
—TT S— 1 T g — —0 T
e /22“7 k‘ZW = 2cosh(7%) Z ¢ Fd™7 = 2cosh(Z)((k — )¢ (o).
b0 dlb ¢,d>0

Proposition now follows immediately.

5. THE CASE OF NON-HOLOMORPHIC CUSP FORMS

5.1. Integral transforms. Here we define various integral transforms involving
spherical functions. We refer to §3 of [KL3| for further detail.

Let foo € C°(G(R)T//K) as in (2.15). The Harish-Chandra transform of
foo is the function on R defined by

whe =0 [~ aal(y 1) (5 1 an
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‘We will also encounter the twisted variant

60 g = [ aal(y 7) (Ve

for r € R, and a twisted variant in the big Bruhat cell

(52)  Hralxly) =y /? /_ O;foo<((1) f) (01 ;) <y 1))6—27”‘%3:

for @ € R. Each of the above functions is smooth with compact support in R*.
For ¢ € C2°(R™1), the Mellin transform is denoted

M.b = /0 S(y)y"d"y.

Composing with the Harish-Chandra transform, we obtain the spherical trans-
form

The Selberg transform of f,, is defined by

(5.3) h(t) = Sfoo(it) = Myt H foo.

Then h(it) is an even Paley-Wiener function. This means that it is holomorphic
and there exists a real number C' > 1 depending only on A such that for any integer
M > 0, we have

lolld
(1+ Jap
Using we also define a twisted spherical transform of f., by
(5.5) he(s) = MHy foc,
and a twisted variant in the big Bruhat cell
(5.6) B (8) = M Ho o foo

for « € R, as in (6.2)). These functions likewise are holomorphic and satisfy (5.4)),
though they are not even in general. Note that hg(s) = h(s).

(5.4) h(a +ib) <asn

5.2. Nonholomorphic case: spectral side. When k = 0, the spectral side (3.2))
of the relative trace formula becomes

)\n ) ) Ur j A s Wy
(5.7) = @ Z (uj)ar (uj)A(s, u; X)h(tj)Kitj 2nlr)).

12
2 UjE]:$ew(N3,w/) ||u.]||

Proposition 5.1. Let k =0 and r € Q. If 0 = Re(s) is sufficiently large, then the
integral

/*\A* /Q\A Z ’Af(U)R(fX)¢u((y1))¢u(((1);f))|yls_1/2‘dxd*y

TN [[ull®
u€Fy (N3,w’)

is absolutely convergent. Hence as in Pmposition the integral (3.1)) is equal to
(5.7) for such s. The sum (5.7)) converges absolutely for all s € C, and defines an
entire function.
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Proof. As in the proof of Proposition [3.1] by the fact there are at most finitely
many u with exceptional spectral parameters, it suffices to sum over the set F’ of
newforms for which ¢ is real. Thus we need to show that

s X RER [ end(" ey [ (g §)

ucF’
is finite. The second integral is bounded by an absolute constant:

|Pu( 1 )|dx = |u i+ x)|dx < Z‘am K (2w|ml)e 2mima | 7.
Q\A 0
m#0
= Z‘am Kt (2m|m)|) ‘ < Z |2+ Ko (2n|m]) <

m#0 m#0
Here, we have used the fact that since t is real,

(59) |K'Lt(y)| — %/0 67y(w+w_1)/2witd*w § %A e*y(w+w_1)/2d*w _ Ko(y),
and also the bound |a,, (u)| < |m[*/?*¢ ([IK], (5.92)). The strongest known bound
of this nature is that of Kim and Sarnak [KS]:

(5.10) ()] < (Jml)|m|7/%,

where 7 is the divisor function. This, together with (2.26)), gives |Af(u)| <, |h(2)].
By the above observations, and following the proof of Lemma we see that (5.8)
is
(5.11) 2| 0’ 1/2d*

2 ||u||
Using the Fourier expansion of u,, the above integral is bounded by

o 7% am o %
/ Z‘X m)am (u) Kt (27|mly) |y7d*y < (27)~ Z Jam(w)] / Ki:(y)|y°d*y
m##0 m#Q

Once again invoking (|5.9)), we have

/ | Kit(y) |y d*y S/ Ko(y)y®d*y = 2°*I'(c/2)?
0 0

by a well-known identity for ¢ > 0 (cf. [GRy], 6.561.16). Using (5.10), we see
that the sum over m is bounded by an absolute constant when ¢ > 3. This shows
that the integral of u, in is bounded by a constant independent of u and
depending continuously on o > 3. As shown by Goldfeld, Hoffstein and Liemann,

(5.12)

1
< N )

for an absolute (ineffective) implied constant, [GHL94]. Thus we reduce to proving
that

(5.13) > )|+ It))°
u; €F’

This follows from (5.4)) and the fact that |¢;| — oo (for details, see the end of the
proof of Proposition 7.5 of [KL3]).
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Now we prove that the sum (5.7)) is absolutely convergent for all s € C. Once
again, it suffices to sum over u € F’. Thus (using (5.10) to bound a,(u) and A, (u)),
we need to show

(5.14) >

u; €F’
By Stirling’s formula ([AS], 6.1.39), for real ¢ # 0 (taking arg(it) = £7) we have
s+t s—it 2ti=d o

S| o ()T (CI T 2 (l) T e

as [t| = oo. Similarly, because ¢ is real, we have
(5.16) K (27|r|) < e~ 7IH/2

as [t| = oo (cf. eq. (19) on p. 88 of [Ex]).

To bound the L-functions, by the functional equation we can assume without
losing generality that ¢ > 1/2. For such s, we have the the uniform convexity
bound

2 2

’]_—*(M)]_"(S;ﬁj)L(S, wj, X)h(t;) K, (27|r))|
e =

s—it—1

~ 2T

(5.15) ’F(

L(s,uj, x) <o (DENP)VAEE(|s] 4+ 3) /2% (|t + 3)1/2+<
(IK], Theorem 5.41 and (5.8)). Here the implied constant is independent of u;.
Using (5.12)), we now find that the left-hand side of (5.14) is

< (|S|+3)1/2+EZ(|tj|+3)1/2-&-5(@)0—1|h(tj)|e_7r|tj|

uj
The finiteness of the above sum follows as for (5.13)). It is clear as well that the
convergence is uniform for s in compact sets, giving an entire function. O

5.3. Non-holomorphic case: geometric side. By Proposition and (3.7),
the geometric side is equal to

Li(s)+ Y I, (s),
acQ*
for §, = (‘11 Bl ) The only changes from the holomorphic case discussed earlier are
archimedean. For example, it remains true here that Is,(s) # 0 only if a = & Zb
for some nonzero integer b. The local orbital integrals at oo are now given as
general integral transforms of fo, € C°(G(R)1//K). Using the fact that fo has
compact support modulo Z,,, we will see that all but finitely many of the geometric
terms vanish, and indeed if NV is sufficiently large, the only nonzero term is the main
term.
For the main term we have, upon replacing y by y~! in ,

= [ ral(§ Y Pty

Since fo is supported on G(R)™, the first integral can be taken over R, where
Xoo 1s trivial. Furthermore, since f., is bi-invariant under Z,, K, it follows easily
(using the Cartan decomposition [KL3) §3.1]) that

(5.17) foo(9) = foolg™).
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Therefore

(518) Il(s)m _ /oo /OO foo( <y61 —1([/') )eQTrir:L’dx yl/Q*Sd*y
= /OO |:y1/2/ foo((y ‘f) )eQwirxdx:| Y d*y = MMy foo = ho(s)
0 —

as in .

Multiplying the above by the local non-archimedean values given in (3.11)) (taking
k' = 1), we obtain the following.

Proposition 5.2. The global integral I1(s) is nonzero only if ged(r, N) = 1. In
this case,

Il(s)::;;(f)QNH(ﬁ—l) > AW (G)x(5).

pIN d| ged(n.r)

For §, = (Cll _01>, the archimedean orbital integral is

[ L ) (5 D)6 1)l
LG G DE e
o =Ll D) ()

_M( rafoo r,a(S)
as in (5.6).

Proposition 5.3. For any choice of foo € CX(G(R)T//K), I5(s) = 0 for all but
finitely many 8. Indeed, there exists a constant C, depending on fo and n, such
that

(5.20) Zh )="I(s ,QﬁNHW—D Y AW xR

pIN d| ged(n,r)

—27rirxd$ ys—1/2d*y

whenever N > C.

Proof. The function (i ?) — w535 is well-defined in G(R). Hence it is bounded

on the compact set Supp(feo)/Zoo. Taking

Go)=C )G )= ),

= a. This shows that if |a| is sufficiently large, the above matrix lies

ay
ad—py
outside the support of fo for all z,y, and hence Is,(s) = 0. Furthermore, because

la| = N2 b >N 5
as N — oo, when N is sufficiently large the only nonzero term is Iy (s). [l

Putting everything together, we now arrive at the main result for Maass forms.
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Theorem 5.4. Let r,n, N be positive integers with N square-free and (rn,N) =
1. Let x be a primitive Dirichlet character of modulus D, where (D,rnN) = 1.
Let h(iz) be an even Paley-Wiener function. When the square-free integer N is
sufficiently large, we have for all s € C,

(5.21) S Antg) ar () A 45,00 4y e (o)

3 12
UjE}—im”(NB,w/) w(N )Hu]H
2 1 S n ™m
= he(s) [Ta- 5) > WG ()
pIN d| ged(n,r)

for h,-(s) as in (5.5).

Remarks: (1) An immediate corollary (at least when ged(n,r) = 1) is the exis-
tence of a Maass newform of level N3 for which \,(u), a,(u), and A(s,u,x) are
simultaneously nonzero.

(2) When ged(r,n) = 1, the sum on RHS becomes w/(n)x(rn). If r = n = 1,
then the RHS is independent of x. This is the case stated as Theorem

(3) Both sides vanish when (r, N) > 1. See the remark after Theorem [4.1

(4) One can weaken the hypotheses somewhat. It is sufficient for h(iz) to be
Paley-Wiener of order m > 8 (cf. Corollary 6.12 and (3.14) of [KL3]).

Proof. As a consequence of Proposition [3.2] and the above discussion, the equality
between the spectral side (5.7) and the geometric side has been established
in some right half-plane Re(s) > « for « sufficiently large. Multiplying both sides
of this relative trace formula by ——2-— we obtain for such s. On the other

Vnap(N*
hand, by Proposition each side of (5.21) is an entire function of s. Hence the
equality is valid for all complex s. O
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