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Abstract. Using a simple relative trace formula, we compute averages of

twisted modular L-values for newforms of cubic level. In the case of Maass

forms, we obtain an exact formula. For holomorphic forms of weight k > 2,
we obtain an asymptotic formula which agrees with the estimate predicted by

the Lindelöf hypothesis in the weight and level aspects.
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1. Introduction

A simple trace formula is one in which a local discrete series matrix coefficient is
used, thereby annihilating the contribution of the continuous spectrum (see Lecture
V of [Ge] for a general overview). By choosing the matrix coefficient appropriately,
one can also project onto a particular local new vector. For example, using the
matrix coefficient attached to a lowest weight vector for the weight k discrete series
of GL2(R), one isolates the space of holomorphic cusp forms of weight k from the
rest of the automorphic spectrum. In essence, this was the method used by Selberg
in his formula for the trace of a Hecke operator ([Sel] §4).

In this paper we give a non-archimedean illustration of this technique, using
matrix coefficients attached to certain supercuspidal representations of GL2(Qp).
We work with a relative trace formula to compute averages of the form∑

u∈F

λn(u)ar(u)Λ(s, u, χ)

‖u‖2
Br(u),

where u ranges over the set of newforms of weight k and level N3 for N square-free
and k > 2 or k = 0, λn(u) is the associated eigenvalue of the Hecke operator Tn,
ar(u) is the r-th Fourier coefficient, Λ(s, u, χ) is the completed L-function, twisted
by a fixed primitive character χ of conductor D prime to N , and Br(u) is a function
of the spectral parameter of u with sufficient decay, which we take to be 1 in the
case of holomorphic forms (i.e. when k > 2).

We have two main results, one for Maass newforms and one for holomorphic
newforms. Each is an explicit version of the relative trace formula introduced by
Jacquet in [J]. In broad terms, we start with a kernel function attached to the
Hecke operator Tn, and integrate it (against a character) over the group N ×M ,
where N is unipotent and M is diagonal. The unipotent integral gives the Fourier

In the published article, equation (2.23) is incorrect, and consequently so are equations (3.6)

and (3.9). All other results, including the main theorems, are unaffected. This is a corrected

version of the paper.
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coefficient ar(u), and the diagonal integral gives the L-function. The geometric side
reduces to the calculation of numerous local orbital integrals.

The result for Maass forms is given in Theorem 5.4 below. A special case of it is
the following exact expression for a weighted average of Maass newform L-values:

Theorem 1.1. Let χ be a primitive Dirichlet character with modulus D. Let h(iz)
be any even Paley-Wiener function, and let h1(s) be the e−2πix-twisted spherical
transform of the inverse Selberg transform of h (cf. (5.5)). Then there exists a
constant C ≥ 1 depending only on h, such that for all square-free integers N > C
prime to D and all complex numbers s,

(1.1)
∑

uj∈Fnew+ (N3)

Λ(s, uj , χ)

ψ(N3)‖uj‖2
h(tj)Kitj (2π) = 2h1(s)

∏
p|N

(1− 1
p ).

Here, Fnew+ (N3) denotes the set of even Maass newforms on Γ0(N3) of weight 0
and trivial central character, normalized with first Fourier coefficient a1(u) = 1, tj
is the spectral parameter of uj, Kν(x) is the Bessel function, and ψ(N3) denotes
the index [SL2(Z) : Γ0(N3)].

Remarks:
(1) It is interesting to note that the right-hand side of (1.1) (and hence also the

left-hand side for N sufficiently large) is independent of χ.
(2) Given any s ∈ C, we can choose h so that h1(s) is nonzero. Therefore

an immediate consequence is the existence of a Maass newform of level N3 with
nonvanishing twisted L-value at s.

(3) We normalize the Petersson norm on page 4 so that it is independent of the
choice of level and coincides with the adelic L2-norm. Many people write ‖u‖2
where we have written ψ(N3)‖u‖2.

The analogous result for holomorphic cusp forms is stated in Theorem 4.1. In
that case, we no longer have an exact formula because the archimedean discrete
series matrix coefficient is not compactly supported. But the resulting asymptotic
formula still gives nonvanishing, as well as a bound for the sum of the central L-
values which is as strong as that predicted by the Lindelöf Hypothesis in the weight
and level aspects (cf. Corollary 4.3). In Corollary 4.4, we compare the contribution
of newforms and oldforms in the analogous sum for the full space of cusp forms
of level N3. When N is prime, the contribution of oldforms becomes negligible as
N → ∞, but in the other extreme, if N is the product of the first m primes, the
contribution of newforms becomes negligible as m→∞.

In both of our main results, we project onto the newforms of cubic level by
using the simple supercuspidal representations defined by Gross and Reeder [GR].
Matrix coefficients for these representations have previously been used in the trace
formula by Gross in [Gr], where, for a simple group over a totally real number field,
he computed the multiplicities of cuspidal representations with certain prescribed
local behavior in terms of values of modified Artin L-functions at negative integers.
The local test vector used by Gross has a very simple matrix coefficient and is
ideally suited for counting representations. However, it is not a new vector so it
cannot be used for our purpose here.

In [KL4], we defined simple supercuspidal representations for the group GLn(Qp),
showing that they have conductor pn+1 and exhibiting the new vector. We then
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gave an explicit formula for the matrix coefficient attached to the new vector in
the case where n = 2. Lastly, we showed that every irreducible admissible repre-
sentation of GL2(Qp) with conductor p3 is a simple supercuspidal representation,
assuming that its central character is unramified or tamely ramified. In the present
paper, at each place p|N we sum the new vector matrix coefficients attached to
the 2(p − 1) distinct simple supercuspidal representations to obtain a test func-
tion which projects onto the newforms of level N3 and annihilates the continuous
spectrum.

We restrict to the field Q throughout for simplicity, but since all of the computa-
tions are local, there would be no serious obstruction to working over an arbitrary
totally real number field.

Acknowledgements: We would like to thank the referee for several helpful com-
ments and for pointing out some typos in an earlier draft. We also thank the NSF
for supporting this work through grant DMS 0902145. When we were in graduate
school as students of Jon Rogawski, he introduced us to the trace formula and
encouraged us to work it out explicitly in various situations. At the time, he was
working on a project with Ramakrishnan to compute certain averages of L-series
using the relative trace formula [RR]. The trace formula we develop here can be
viewed as a cross between theirs and the Kuznetsov formula. We dedicate this
paper to the memory of Rogawski, an inspirational teacher and mathematician.

2. Preliminaries

2.1. Orthogonality of matrix coefficients. The proposition below, which has
been attributed to Langlands, will be a key ingredient in what follows.

Proposition 2.1. Let G be a unimodular locally compact group with center Z. Let
(π, V ) be an irreducible unitary square integrable representation of G with formal
degree dπ. Let w ∈ V be a unit vector, and suppose that the function f(g) =

dπ〈π(g)w,w〉 is absolutely integrable over G = G/Z. Then for any irreducible
unitary representation (ρ,W ) of G with the same central character as π (but not
necessarily square integrable), the operator ρ(f) is identically zero on W unless
ρ ∼= π. Furthermore, π(f) is the orthogonal projection operator from V onto Cw.

Remark: The formal degree dπ depends on a choice of Haar measure on G, as does
the operator π(f). We must assume that these measures are the same.

Proof. See Corollary 10.29 of [KL1]. �

2.2. Notation and measure. Given a prime number p and an integer x, we write
xp = ordp(x), so that x =

∏
p p

xp .

Let A,Afin be the adeles and finite adeles of Q, and henceforth let G = GL(2).
Write G = G/Z, where Z is the center of G. We let Zp = Z(Qp) and Z∞ = Z(R)
be the respective centers of G(Qp) and G(R). We also set K∞ = SO(2) and
Kp = GL2(Zp).

We take Lebesgue measure dx on R, and we use the measure d∗y = dy
|y| on

R∗. On Qp and Q∗p we normalize the Haar measures so that meas(Zp) = 1 and
meas(Z∗p) = 1 respectively. With these choices, the product measure on A has

the property that meas(Q\A) = 1. In A∗fin we have meas(Ẑ∗) = 1. We normalize

Haar measure on G(Qp) by taking meas(Kp) = 1. Likewise in G(Qp) we take
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meas(Kp) = 1. On G(Afin), we give G(Ẑ) the measure 1. We normalize Haar

measure on G(A) so that meas(G(Q)\G(A)) = π/3. See [KL1] for further details
about this normalization.

We let θ : A −→ C∗ be the nontrivial character given locally by

(2.1) θp(x) =

{
e−2πix if p =∞ (x ∈ R)

e2πirp(x) if p <∞ (x ∈ Qp),

where rp(x) ∈ Q is the p-principal part of x, a number with p-power denominator
characterized up to Z by x ∈ rp(x) + Zp. The kernel of θp is Zp, and θ is trivial on
Q ⊂ A.

2.3. Cusp forms. Let k be a nonnegative integer. Eventually we will assume
further that k 6= 1, 2. Let N be a positive integer, and let ω′ be a Dirichlet
character modulo N satisfying

ω′(−1) = (−1)k.

Define the Hecke congruence subgroups

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z)| c ∈ NZ},

Γ1(N) = {
(
a b
c d

)
∈ Γ0(N)| d ∈ 1 +NZ},

and let

(2.2) ψ(N) = [SL2(Z) : Γ0(N)] = N
∏
p|N

(1 +
1

p
).

Consider the space of measurable complex-valued functions u on the complex
upper half-plane H which have the following properties:

(1) For all z ∈ H and all
(
a b
c d

)
∈ Γ0(N)

(2.3) u
(az + b

cz + d

)
= ω′(d)(cz + d)ku(z).

(2) u has finite Petersson norm:

‖u‖2 =
1

ψ(N)

∫
Γ0(N)\H

|u(x+ iy)|2yk dx dy
y2

<∞.

(3) u is holomorphic if k > 0.
(4) u is cuspidal: at each cusp of Γ1(N) it has a constant term which vanishes

almost everywhere (see e.g. §4.1 of [KL3] for a detailed definition).

We denote this space by Sk(N,ω′) if k > 0, and by L2
0(N,ω′) if k = 0. The latter

space is infinite-dimensional if nonzero, but it has a basis consisting of Maass forms,

i.e. those elements which are eigenfunctions of the Laplacian ∆ = −y2( ∂2

∂x2 + ∂2

∂y2 ).

We write the Laplace eigenvalue as

∆u = ( 1
4 + t2)u,

and refer to t as the spectral parameter of u. We know that t ∈ R∗ ∪ i(− 1
2 ,

1
2 ),

with the number of u with exceptional (non-real) parameter being finite.
If u is continuous, condition (1) implies that u has a Fourier expansion of the

form
u(x+ iy) =

∑
n 6=0

an(u, y)e2πinx.
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The coefficient an(u, y) has the well-known form

(2.4) an(u, y) =


an(u)e−2πny if n, k > 0

0 if k > 0, n < 0

an(u)y1/2Kit(2π|n|y) if k = 0,

where Kit is the Bessel function and t is the spectral parameter of u.
The weight k Hecke operator Tn is defined by

Tnu(z) = nα(k)
∑
ad=n
a>0

d−1∑
b=0

ω′(a)d−ku(
az + r

d
),

where α(k) = k−1 if k > 0 and α(k) = −1/2 if k = 0. If u is a Hecke eigenform, we
denote the eigenvalues by Tnu = λn(u)u. We say that u is a newform if its Hecke
eigenvalue packet {λp(u)}p-N has an eigenspace that is exactly one-dimensional.
In this case, a1(u) 6= 0, and we will normalize so that a1(u) = 1. Under this
normalization,

(2.5) an(u) = λn(u)

for all n. We let

Fnewk (N,ω′) = {newforms u, with a1(u) = 1}.
We also define T−1u(x+iy) = u(−x+iy). A Maass cusp form is even (resp. odd)

if T−1u = u (resp. T−1u = −u). If u is even, then in (2.4) we have a−n(u) = an(u),
while if u is odd, an(u) = −a−n(u). It is a basic fact that L2

0(N,ω′) has an
orthogonal basis consisting of Maass eigenforms which are also eigenfunctions of
T−1. We let

Fnew+ (N,ω′) = {u ∈ Fnew0 (N,ω′)|u is even}.
We define the L-function of u by

L(s, u) =

∞∑
n=1

an(u)n−s.

This converges absolutely when Re(s) is sufficiently large. We define the completed
L-function by

(2.6) Λ(s, u) =

{
(2π)−sΓ(s)L(s, u) k > 0

π−sΓ( s+ε+it2 )Γ( s+ε−it2 )L(s, u) k = 0,

where ε = 0 or 1 according to whether u is even or odd. It has an analytic
continuation which satisfies a functional equation relating values at s and 1 − s
when k = 0, and at s and k − s when k > 0.

2.4. Adelic cusp forms. Let ω be the Hecke character attached to ω′ by

(2.7) ω : A∗ = Q∗(R+ × Ẑ∗) −→ Ẑ∗ −→ (Z/NZ)∗ −→ C∗

where the first two arrows are the canonical projections, and the last arrow is ω′.
For q > 0, let Lq(ω) = Lq(G(Q)\G(A), ω) denote the space of measurable G(Q)-
invariant functions φ : G(A) −→ C which transform under the center by ω, and
satisfy

∫
G(Q)\G(A)

|φ(g)|qdg < ∞. When q = 2, we let L2
0(ω) ⊂ L2(ω) denote the

subspace of cuspidal functions.
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Letting

K1(N) = {
(
a b
c d

)
∈ G(Ẑ)| c, d− 1 ∈ N Ẑ},

we embed Sk(N,ω′) and L2
0(N,ω′) (taking k = 0 in the latter case) isometrically

into L2
0(ω) by defining

(2.8) φu(γ(g∞ × gfin)) = j(g∞, i)
−ku(g∞(i))

for γ(g∞ × gfin) ∈ G(Q)(G(R)+ ×K1(N)) = G(A) and

j(
(
a b
c d

)
, z) = (ad− bc)−1/2(cz + d).

In the k = 0 case, the map u 7→ φu is a surjective linear isometry from L2
0(N,ω′) to

L2
0(ω)K∞×K1(N) (the K∞×K1(N)-invariant vectors), (cf. [KL3], Proposition 4.5).

Lemma 2.2. Let u be a holomorphic Hecke eigenform (k > 0) or a Maass eigen-
form with spectral parameter t (k = 0). Then for r ∈ Q,∫

Q\A
φu(
(

1 x
0 1

)
)θ(rx)dx =


ar(u)Kit(2π|r|) if r ∈ Z, k = 0

e−2πrar(u) if r ∈ Z+, k > 0

0 otherwise,

where θ is the character defined in (2.1). For all s ∈ C,∫
Q∗\A∗

φu(
( y

1

)
)|y|s−k

′/2d∗y =


1
2Λ(s, u) if k = 0, u is even

0 if k = 0, u is odd

Λ(s, u) if k > 0,

where Λ(s, u) is the completed L-function defined in (2.6) and k′ =

{
k k > 2

1 k = 0.

Each of the above integrals is absolutely convergent.

Proof. For a proof of the first statement, see Corollary 12.4 of [KL1] and Lemma 7.1

of [KL3]. For the second, suppose k = 0. Using the fundamental domain R+ × Ẑ∗

for Q∗\A∗, we have∫
Q∗\A∗

φu(
( y

1

)
)|y|s−1/2d∗y =

∫ ∞
0

u(iy)ys−1/2 dy

y
.

The result then follows by a well-known classical computation using the Fourier
expansion (cf. [Go], pp. 86). The proof when k > 0 is similar; see e.g. Lemma 3.1
of [KL2]. �

2.5. Newforms. Here we will define a space of adelic newforms, and realize the
orthogonal projection onto it as an integral operator.

We wish to study newforms with certain local behavior. Let N be an integer
multiple of the conductor of ω with the property that Np ≥ 2 for all p|N . For each
p|N , let σp be a fixed supercuspidal representation of G(Qp) with central character
ωp and conductor pNp . Let σ̂ denote the tuple {σp}p|N .

Under the action of G(A) on L2
0(ω) by right translation, the space decomposes as

a direct sum of irreducible cuspidal representations π. Given a nonnegative integer
k 6= 1, 2 (i.e. k ∈ {0, 3, 4, 5, . . .}), we define the subspace

(2.9) Hk(σ̂, ω) =
⊕

π ⊂ L2
0(ω),

where π ranges through the irreducible cuspidal representations for which:
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(1) πp = σp for all p|N .
(2) πp is unramified for all finite p - N .
(3) π∞ is a spherical principal series representation of G(R) with trivial central

character if k = 0.
(4) π∞ is the weight k discrete series representation πk of G(R) with central

character
(
z
z

)
7→ sgn(z)k if k > 2.

For each such π = ⊗′πp, define a vector (the “newform”) wπ = ⊗wπp in the space
of π by taking

wπp =


unit new vector ([Ca]) p|N
unit unramified vector p - N∞
unit spherical vector p =∞, k = 0

unit lowest weight vector p =∞, k > 2,

where, in almost every unramified case, the unit vector is the one predetermined by
the restricted tensor product. In each case, the vector wπp is unique up to unitary
scaling. Let

(2.10) Ak(σ̂, ω) =
⊕
π

Cwπ ⊂ Hk(σ̂, ω).

This corresponds to a classical space of newforms of level N on the upper half-plane.
Letting φπ ∈ L2

0(ω) denote the function defined by ωπ, the associated cusp form on
H is given by

(2.11) u(x+ iy) = y−k/2φπ(
( y x

0 1

)
∞ × 1fin) (y > 0).

This is the inverse of the association (2.8), i.e., φu = φπ.
For p|N , define a function fp : G(Qp) −→ C by

(2.12) fp(g) = dp
〈
σp(g)wσp , wσp

〉
(p|N),

where dp is the formal degree of the supercuspidal representation σp relative to

our choice of Haar measure on G(Qp), and the inner product is G(Qp)-invariant.
Likewise, if p =∞ and k > 2 we take

(2.13) f∞(g) = dk〈π∞(g)wπ∞ , wπ∞〉 (k > 2),

where dk is the formal degree of the discrete series representation π∞ = πk. The
latter function is supported on the subgroup

G(R)+ = {g ∈ G(R)| det(g) > 0}.
(We rule out k = 2 because the function (2.13) is integrable precisely when k > 2,
and integrability is required by Proposition 2.1.)

For p - N∞, we assume that fp is a bi-Kp-invariant function on G(Qp) with
compact support modulo the center, and that for all but finitely many such p,
fp = φp is the function supported on ZpKp given by

(2.14) φp(zκ) = ωp(z) (z ∈ Zp, κ ∈ Kp).

Likewise if p =∞ and k = 0, we take

(2.15) f∞ ∈ C∞c (G(R)+//K∞) (k = 0).

The latter is the space of smooth functions on G(R)+ which are bi-invariant under
Z(R)K∞ and have compact support modulo Z(R). Such a function enables us to
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project onto the K∞-invariant space of L2(ω), which contains the Maass forms of
weight k = 0.

Proposition 2.3. With local functions as above, let f =
∏
fp be the associated

function on G(A). Let R(f) be the operator on L2(ω) defined by

R(f)φ(x) =

∫
G(A)

f(g)φ(xg)dg.

Then R(f) annihilates L2
0(ω)⊥. In fact, it factors through the orthogonal projection

of L2(ω) onto Ak(σ̂, ω), and acts diagonally on the latter space, the vectors wπ
being eigenvectors.

Proof. For a proof of the first statement, see Proposition 1.1 of Rogawski’s article
[Rog]. Now suppose v ∈ L2

0(ω). Since the latter space is a direct sum of cuspidal
representations, we may assume that v ∈ Vπ for some π = ⊗′πp. Likewise, we may
assume that v = ⊗′vp is a pure tensor. For the purposes of this proof, let G′ denote

the restricted direct product G′ =
∏′
p-N G(Qp). Decompose π as

π = π∞ ⊗ π′ ⊗
⊗
p|N

πp,

where π′ is a representation of G′, and write v = v∞ ⊗ v′ ⊗
⊗

p|N vp accordingly.

Then (e.g. by Proposition 13.17 of [KL1])

R(f)v = π∞(f∞)v∞ ⊗ π′(f ′)v′ ⊗
⊗
p|N

πp(fp)vp.

If p|N , or p = ∞ and k > 2, then by Proposition 2.1, the above vanishes unless
πp = σp (resp. πk), and in the latter case πp(fp) is the orthogonal projection
onto Cwπp . Because f ′ is bi-invariant under

∏
p-N Kp, π

′(f ′) has its image in the

space Cw′ =
⊗′

p-N Cwπp ⊂ Vπ′ , and it annihilates the orthogonal complement of

this subspace (see e.g. Lemma 3.10 of [KL3]). The analogous statement holds for
π∞(f∞) if k = 0 for the same reasons. It follows that R(f) annihilates Ak(σ̂, ω)⊥,
and acts by scalars on the vectors wπ ∈ Ak(σ̂, ω). �

2.6. Twisting. Let D be a positive integer with gcd(D,N) = 1, and let χ be a
primitive Dirichlet character modulo D. Given a cusp form

u(z) =
∑
n 6=0

an(u, y)e2πinx

in Sk(N,ω′) or L2
0(N,ω′), its twist by χ is the form

uχ(z) =
∑
n 6=0

χ(n)an(u, y)e2πinx,

which belongs to Sk(D2N,χ2ω′) or L2
0(D2N,χ2ω′). If u is a Maass form with

spectral parameter t, then so is uχ. In this section we will define a function fχ on
G(Afin) for which R(fχ) encodes the twisting operation adelically. See §3 of [JK]
for more detail. Beware that the nebentypus ψ in [JK] plays the role of ω′ here,
since we have a complex conjugate in (2.3) which is not present in [JK].
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We let χ∗ : A∗ −→ C∗ be the Hecke character attached to χ as in (2.7) (but using
D in place of N).1 We let χp be the local component of χ∗. It is a character of Q∗p,

and when p|D it can be viewed as a primitive character of the group (Z/pDpZ)∗.
The Gauss sum attached to χ is

τ(χ) =
∑

m∈(Z/DZ)∗

χ(m)e2πim/D.

If we set

(2.16) τ(χ)p = χp(
D
pDp

)τ(χp),

then τ(χ) =
∏
p|D τ(χ)p (cf. [JK], (3.10)).

For each prime p|D, we define a local test function fχp : G(Qp) −→ C by

fχp (x) =

{
ωp(z)χp(m)

τ(χ)p
if x = zg for z ∈ Zp and g ∈

(
1 −m/D
0 1

)
Kp for m ∈ (Zp/DZp)

∗

0 otherwise.

For the primes p|N , we take fχp to be the function supported on ZpK1(N)p given
by

(2.17) fχp (zκ) =
ωp(z)

meas(K1(N)p)
=
ψp(N)

ωp(z)
,

where ψp(N) = [Kp : K1(N)p] = pNp(1 + 1
p ). Lastly, for p - DN , we take fχp to be

the function defined in (2.14). Now let fχ =
∏
p<∞ fχp , and define the operator

(2.18) R(fχ)φ(x) =

∫
G(Afin)

fχ(g)φ(xg)dg (φ ∈ L2(ω)).

We call this the twisting operator of level N attached to χ.

Proposition 2.4. For y ∈ R+× Ẑ∗ ∼= Q∗\A∗ and u a holomorphic or Maass cusp
form of level N and nebentypus ω′,

R(fχ)φu(
( y

1

)
) = χ∗(y)φuχ(

( y
1

)
).

Proof. See Proposition 3.2 of [JK]. That result is stated for holomorphic cusp
forms, but the proof carries over verbatim to the case of Maass forms. �

Given two functions f1, f2 ∈ L1(G(Afin), ω), we define their convolution by

f1 ∗ f2(x) =

∫
G(Afin)

f1(g)f2(g−1x)dg =

∫
G(Afin)

f1(xg−1)f2(g)dg.

Then f1 ∗ f2 ∈ L1(G(Afin), ω), and it is straightforward to show that R(f1 ∗ f2) =
R(f1)R(f2) as operators on L2(ω).

Proposition 2.5. Let f = f∞ × ffin be a function on G(A) of the type defined in
Section 2.5, with the property that for all p|D, fp is the function (2.14). Then

(2.19) R(f∞ × (fχ ∗ ffin)) = R(fχ)R(f).

As a result, the above operator factors through the orthogonal projection of L2(ω)
onto Ak(σ̂, ω) by Proposition 2.3.

1Thus we use two sets of notation: ω′ and χ are Dirichlet characters and ω, χ∗ are the associated

Hecke characters. This was done in order to conform to notation in papers we reference.
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Proof. As mentioned above, R(fχ ∗ ffin) = R(fχ)R(ffin). The local components of
the convolution are given as follows:

(2.20) (fχ ∗ ffin)p = fχp ∗ fp =

{
fχp if p|D
fp if p - D.

Indeed, if p - DN , then the assertion is immediate because fp is bi-Kp-invariant and
fχp is the identity element of the local Hecke algebra of bi-Kp-invariant functions.
Similarly, the case p|D follows easily by the right Kp-invariance of fχp and our
assumption that fp is given by (2.14). If p|N , then for k ∈ K1(N)p, by (2.12) we
have

fp(k
−1x) = dp

〈
σp(x)wσp , σp(k)wσp

〉
= fp(x),

since wσp is fixed by K1(N)p. Thus by (2.17),

fχp ∗ fp(x) =

∫
K1(N)p

fχp (k)fp(k
−1x)dk = fp(x)

∫
K1(N)p

fχp (k)dk = fp(x),

as claimed.
In view of (2.20), we may apply Proposition 2.3 to both sides of the proposed

equality (2.19) to see that they each vanish on L2
0(ω)⊥. Therefore it suffices to

show that they agree on L2
0(ω). Let (π, Vπ) be a cuspidal representation in L2

0(ω).
Given v = v∞ ⊗ vfin ∈ Vπ, by (2.18) we have

R(fχ)v =

∫
G(Afin)

fχ(g)π(1∞ × g)v dg =

∫
G(Afin)

v∞ ⊗ fχ(g)πfin(g)vfin dg

= v∞ ⊗ πfin(fχ)vfin.

For details justifying the movement of the tensor outside the integral, see Lemma
13.16 of [KL1]. Applying the above identity with R(f)v in place of v, the result
follows:

R(fχ)R(f)v = π∞(f∞)v∞ ⊗ πfin(fχ)πfin(ffin)vfin = π∞(f∞)v∞ ⊗ πfin(fχ ∗ ffin)vfin

= R(f∞ × (fχ ∗ ffin))v.

For a justification of the last step, see e.g. Proposition 13.17 of [KL1]. �

2.7. A particular choice of function. The above discussion is rather general,
and we will now define a very specific function f as in §2.5, designed to project
onto the newforms of cubic level and then act as a Hecke operator. For our main
test function in the trace formula, we will then take F = f∞ × (fχ ∗ ffin), with fχ

a twisting operator defined as above.
Henceforth we take N > 1 to be a square-free integer. We make the following

assumption in all that follows:

(**) ω′ is a Dirichlet character of modulus N3 whose conductor divides N .

As before, we let ω be the associated Hecke character.
For each p|N , the conductor of ωp divides p. Therefore by Proposition 7.2 of

[KL4], there are exactly 2(p− 1) irreducible admissible representations of G(Qp) of
conductor p3 and central character ωp, up to isomorphism. These are the simple
supercuspidal representations, which are parametrized naturally by the pairs (t, ζ)
with t ∈ (Z/pZ)∗ and ζ ∈ C satisfying ζ2 = ωp(tp). The construction depends
on the choice of a nontrivial character of Z/pZ, which we fix to be x 7→ θp(

x
p ).
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Let σ = σt,ζ be the supercuspidal representation indexed by (t, ζ). It is defined
precisely in [KL4], but all that we need here is the formula for its matrix coefficient

fσ = dσ〈σ(g)wσ, wσ〉,
where the formal degree dσ is taken relative to the Haar measure for which meas(Kp)
is 1, and wσ is a unit new vector as before. By Theorem 7.1 of [KL4],

(2.21) fσ = fσ1 + fσ2 ,

where fσ1 and fσ2 have disjoint support, and for z ∈ Zp, are given by Kloosterman
sums:

(2.22) fσ1 (zg) =
p+ 1

2ωp(z)

∑
w∈(Z/pZ)∗

θp

(−bw − tc
a w
−1

p

)
for g =

(
a bp−1

cp2 d

)
∈
(

Z∗p
1
pZp

p2Zp 1+pZp

)
, and

(2.23) fσ2 (zg) =
(p+ 1)ζ

2ωp(zd)

∑
w∈(Z/pZ)∗

ωp(w)θp

(− c
aw −

tb
d w
−1

p

)
for g =

(
c dp−2

ap b

)
∈
(

Zp
1
p2

Z∗p

pZ∗p Zp

)
. The function fσ vanishes outside the set

Zp ·
(

Z∗p p−1Zp
p2Zp 1 + pZp

)⋃
Zp ·

(
Zp p−2Z∗p
pZ∗p Zp

)
.

Fix an integer n > 0 with gcd(n,DN) = 1. Let

M(n)p = {
(
a b
c d

)
∈M2(Zp)| ad− bc ∈ nZ∗p}.

Define, for p|n, the local Hecke operator fnp : G(Qp) −→ C, supported on ZpM(n)p,
by

(2.24) fnp (zg) = ωp(z) (z ∈ Zp, g ∈M(n)p).

This plays the role of the classical Hecke operator Tpnp .
Finally, we let f∞ be the matrix coefficient (2.13) if k > 2, or a spherical function

as in (2.15) if k = 0.
With these choices, we define the global function f : G(A) −→ C by

f = f∞ ×
∏
p|N

(
∑
(t,ζ)

fσt,ζ )
∏
p|n

fnp
∏
p-nN

φp,

where, in the case p - nN , φp is the unramified function supported on ZpKp defined
in (2.14). We remark that at the places p|N ,∑

(t,ζ)

fσt,ζ =
∑
(t,ζ)

f
σt,ζ
1

since from the definition (2.23) it follows easily that for each t, f
σt,ζ
2 + f

σt,−ζ
2 = 0.

Nevertheless, we will compute the contribution of fσ2 to the local orbital integrals
in the trace formula that follows, since these do not vanish individually and may
be of interest in other applications.

The function f defined above is a finite sum of functions of the type considered
in §2.5. Thus any new vector wπ belonging to the space

(2.25) Ak(N3, ω)
def
=
⊕
σ̂

Ak(σ̂, ω)
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is an eigenvector of R(f). Here, σ̂ runs through all tuples {σp}p|N of simple super-
cuspidal representations (σp = σt,ζ) with central character ωp, and Ak(σ̂, ω) is the
space defined in (2.10).

Proposition 2.6. Given a new vector wπ ∈ Ak(N3, ω), let u be the associated
newform. Then R(f)wπ = λf (u)wπ, for

(2.26) λf (u) =

{
n1−k/2λn(u) if k > 2

n1/2h(t)λn(u) if k = 0,

where λn(u) is the eigenvalue of the classical Hecke operator Tn acting on u, and
in the k = 0 case, t is the spectral parameter of u and h(t) is the Selberg transform
of f∞ (defined in (5.3) below).

Proof. We may write

R(f)wπ = π∞(f∞)w∞ ⊗ π′(f ′)w′
⊗
p|N

πp(fp)wp
⊗
p|n

πp(fp)wp,

where the ′ indicates the contribution of the primes p - Nn∞ as in the proof of
Proposition 2.3. If p|N , then

πp(fp)wp =
∑
σ

πp(f
σ)wp = wp

by Proposition 2.1, since exactly one of the representations σ is isomorphic to πp.
Likewise if p - nN , then πp(fp)wp = πp(φp)wp = wp by the definition of φp. Hence

R(f)wπ = π∞(f∞)w∞ ⊗ w′
⊗
p|N

wp
⊗
p|n

πp(fp)wp.

Now

π∞(f∞)w∞ =

{
w∞ if k > 2 (by Prop. 2.1 above)

h(t)w∞ if k = 0 (by Prop. 3.9 of [KL3]).

From the product over the places p|n, we get the scalar
√
nλn(u) if k = 0 (see

Lemma 4.6 of [KL3]), and n1−k/2λn(u) if k > 2 (see Proposition 13.6 of [KL1]). �

To incorporate twisting, we consider the function

(2.27) F = f∞ × (fχ ∗ ffin) = f∞ ×
∏
p|N

(
∑
(t,ζ)

fσt,ζ )
∏
p|D

fχp
∏
p|n

fnp
∏

p-nDN

φp,

where fχ is the twisting operator of level N3 as defined in Section 2.6 (where the
level was denoted by N rather than N3 used here). The second equality in (2.27)
follows from (2.20). We will use the above as our test function in the trace formula.
The kernel of the operator R(F ) is

(2.28) K(x, y) =
∑

γ∈G(Q)

F (x−1γy).

Proposition 2.7. Let Fnewk (N3, ω′) be the set of newforms of weight k, level N3

and central character ω′. Then the above kernel function has the spectral form

(2.29) K(x, y) =
∑

u∈Fnewk (N3,ω′)

λf (u)R(fχ)φu(x)φu(y)

‖u‖2
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for λf (u) as in (2.26). The kernel function is continuous on G(A)×G(A) and the
above equality is valid for all points (x, y).

Proof. First, note that by Propositions 2.5 and 2.6,

R(F )φu = λf (u)R(fχ)φu.

Therefore the RHS of (2.29) is the same as

(2.30)
∑
φ

R(F )φ(x)φ(y)

‖φ‖2

where φ ranges through an orthogonal basis for Ak(N3, ω) (defined in (2.25)). In
fact we may even allow φ to range over an orthogonal basis for the whole space
L2(ω) since R(F ) annihilates Ak(N3, ω)⊥. The restriction of R(F ) to the cuspidal
subspace is well-known to be Hilbert-Schmidt, and since R(F ) vanishes on L2

0(ω)⊥

R(F ) is itself Hilbert-Schmidt. (In fact it has finite rank when k > 2, but not
when k = 0.) Hence its kernel is equal to (2.30), proving that (2.29) holds almost
everywhere.

The continuity of (2.28) is trivial when k = 0, since in that case the defining
sum is locally finite, F having compact support modulo the center and G(Q) being
discrete and closed in G(A). When k > 2, f∞ is not compactly supported, so the
continuity is not trivial, but a proof is given in Proposition 18.4 of [KL1].

On the other hand, the continuity of the RHS of (2.29) is trivial when k > 2 since
in that case it is a finite sum of continuous functions. When k = 0, a proof is given
in Corollary 6.12 of [KL3]. In all cases, it follows that (2.29) is valid everywhere. �

3. A relative trace formula

Our goal is to compute the relative trace formula given by the integral

(3.1)

∫
Q∗\A∗

∫
Q\A

K(

(
y

1

)
,

(
1 x
0 1

)
)θ(rx)χ∗(y)|y|s−k

′/2dx d∗y,

where k′ = k if k > 2 and k′ = 1 if k = 0.
On the spectral side we evaluate the double integral using (2.29).

Proposition 3.1. The integral∫
Q∗\A∗

∫
Q\A

∑
u∈Fnewk (N3,ω′)

∣∣∣∣∣λf (u)R(fχ)φu(
( y

1

)
)φu(

(
1 x
0 1

)
)

‖u‖2
θ(rx)χ∗(y)|y|s−k

′/2

∣∣∣∣∣ dx d∗y
is convergent for all s ∈ C when k > 2, and in some right half-plane when k = 0.
Hence for such s, (3.1) is equal to

(3.2)
∑

u∈Fnewk (N3,ω′)

λf (u)ar(u)Λ(s, u, χ)

‖u‖2
Pr(u),

where λf (u) is given in (2.26) and Pr(u) =


1
2Kit(2π|r|) if k = 0 and u is even

0 if k = 0 and u is odd

e−2πr if k > 0.
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Proof. By Proposition 2.4, we have

R(fχ)φu(
( y

1

)
) = χ∗(y)φuχ(

( y
1

)
)

for all y ∈ R+ × Ẑ∗ ∼= Q∗\A∗. Therefore, whenever the double integral in the
statement of the proposition is convergent, (3.1) is equal to∑

u∈Fnewk (N3,ω′)

λf (u)

‖u‖2

∫
Q∗\A∗

φuχ(
( y

1

)
)|y|s−k

′/2d∗y

∫
Q\A

φu(
(

1 x
0 1

)
)θ(rx)dx,

which is equal to (3.2) by Lemma 2.2. Each of the above integrals is absolutely
convergent, so the first assertion of the proposition is immediate when k > 2 since
the sum over u is finite in that case. For the non-holomorphic case, we refer to
Proposition 5.1 below. �

For the geometric side, we use the expression (2.28) and formally unfold (3.1) to
obtain

(3.3)
∑
δ

∫
A∗

∫
A

F (

(
y−1

1

)
δ

(
1 x
0 1

)
)θ(rx)χ∗(y)|y|s−k

′/2dx d∗y,

where δ ranges over M(Q)\G(Q)/N(Q). (See §7 of [JK] for details.) By the Bruhat
decomposition, the elements

1,
(

0 −1
1 0

)
, {

(
a −1
1 0

)
| a ∈ Q∗}

form a set of representatives for these double cosets.

Proposition 3.2. The convergence∑
δ

∫
A∗

∫
A

∣∣∣F (

(
y−1

1

)
δ

(
1 x
0 1

)
)θ(rx)χ∗(y)|y|s−k

′/2
∣∣∣dx d∗y <∞

is valid for all s when k = 0, and for 1 < Re(s) < k − 1 when k > 2. Hence the
spectral side (3.2) is equal to the geometric side (3.3) when 1 < Re(s) < k − 1 if
k > 2, and when Re(s) is sufficiently large if k = 0.

Proof. We will show in the proof of Proposition 5.3 below that when k = 0, the
integrand vanishes identically for all but finitely many δ. Since F also has compact
support modulo the center in this case, the remaining integrals are absolutely con-
vergent. When k > 2, the proof is essentially identical to that of Proposition 7.1 of
[JK], in view of the proof of Proposition 4.5 below. �

We let Iδ(s) denote the double integral attached to δ in (3.3). This orbital
integral can be computed locally. The archimedean integral in the case k = 0 will
be considered in §5 below. In the holomorphic case k > 2, the archimedean orbital
integral was computed in [KL2] and [JK]. The non-archimedean local calculations
at places p - N were carried out in [JK]. Thus it remains here to compute the local
integrals at places p|N . The results will be given in (3.5), (3.7) and (3.10) below.

3.1. Orbital integrals for p|N . To simplify notation in this section, we will write
k rather than k′. Suppose p|N , and let σ = σt,ζ be a supercuspidal representation
of conductor p3 and central character ωp. Define

Jδ(s, f
σ) = Jδ(s, f

σ
1 ) + Jδ(s, f

σ
2 ),
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as in (2.21), where for i = 1, 2,

Jδ(s, f
σ
i ) =

∫
Q∗p

∫
Qp

fσi (

(
y

1

)
δ

(
1 x
0 1

)
)θp(rx)χp(y)|y|k/2−sp dx d∗y.

Then replacing y by y−1 in (3.3), we see that

Iδ(s)p =
∑
σ

Jσδ (s).

Proposition 3.3. Let δ = 1, so that

J1(s, fσ) =

∫
Q∗p

∫
Qp

fσ(

(
y xy
0 1

)
)θp(rx)dxχp(y)|y|k/2−sp d∗y.

Then

(3.4) J1(s, fσ) = J1(s, fσ1 ) =

{
p(p+1)

2 if p - r
0 if p|r,

and

(3.5) I1(s)p =

{
p3 − p if p - r
0 otherwise.

Proof. By (2.23), the matrix
( y xy

0 1

)
never belongs to Supp(fσ2 ), so J1(s, fσ) =

J1(s, fσ1 ). Note that
( y xy

0 1

)
∈ Supp(fσ1 ) = Zp

(
Z∗p p−1Zp
0 1

)
if and only if y ∈ Z∗p

and x ∈ p−1Zp. We substitute u = y ∈ Z∗p, and replace yx by p−1x, so now x ∈ Zp.
Then dx becomes p dx, and

J1(s, fσ1 ) = p

∫
Z∗p

∫
Zp

fσ1 (

(
u p−1x
0 1

)
)θp(

ru−1x

p
)dxd∗u

=
p(p+ 1)

2

∑
w∈(Z/pZ)∗

∫
Z∗p

∫
Zp

θp(
−xw
p

)θp(
−ru−1x

p
)dxd∗u.

The integral over Zp is equal to∫
Zp

θp(
(−w − ru−1)x

p
)dx =

{
1 if u ≡ −rw−1 mod p

0 otherwise.

In particular, this vanishes if p|r. Assuming p - r,

J1(s, fσ1 ) =
p(p+ 1)

2

∑
w∈(Z/pZ)∗

∫
−rw−1+pZp

d∗u =
p(p+ 1)

2
meas(Z∗p),

which proves (3.4). The number of pairs (t, ζ) is 2(p−1). Since (3.4) is independent
of σ (the parameters (t, ζ) not appearing in (3.4)),

I1(s)p = 2(p− 1)J1(s, fσ),

and (3.5) follows. �
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Proposition 3.4. Let δ =
(

0 −1
1 0

)
, so that

Jδ(s, f
σ) =

∫
Q∗p

∫
Qp

fσ(

(
0 −y
1 x

)
)θp(rx)dxχp(y)|y|k/2−sp d∗y.

Then

(3.6) Jδ(s, f
σ) = Jδ(s, f

σ
2 ) =


(p3)k/2−sp(p+ 1)ωp(−rp2)

2ζχp(p3)
if p - r

0 otherwise,

and

(3.7) Iδ(s)p = 0.

Proof. By (2.22), the matrix
(

0 −y
1 x

)
never belongs to Supp(fσ1 ), so Jδ(s, f

σ) =

Jδ(s, f
σ
2 ). Note that

(
0 −y
1 x

)
∈ Supp(fσ2 ) if and only if(

0 −py
p px

)
∈
(

Zp p−2Z∗p
pZ∗p Zp

)
.

In this case, we may write y = −p−3u for u ∈ Z∗p, and x′ = px ∈ Zp. Then

dx′ = p−1dx, and dropping the ′ from the notation, we have

Jδ(s, f
σ
2 ) = p

∫
Z∗p

∫
Zp

fσ2 (

(
p−1

p−1

)(
0 p−2u
p x

)
)θp(
−rx
p

)dxχp(p
−3)(p3)k/2−sd∗u

=
(p3)k/2−sp(p+ 1)ζωp(p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(u)

∫
Zp

θp(
− tx
uw

p
)θp(
−rx
p

)dx d∗u

by (2.23). Replacing u by (−uw)−1, the above is

=
(p3)k/2−sp(p+ 1)ζωp(p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(−uw)

∫
Zp

θp(
(tu− r)x

p
)dx d∗u.

Observe that w is eliminated, and the sum over w contributes p− 1. Furthermore,∫
Zp

θp(
(tu− r)x

p
)dx =

{
1 if u ∈ t−1r + pZp

0 otherwise.

In particular, it vanishes if p|r. Assuming p - r,

Jδ(s, f
σ) =

(p3)k/2−sp(p+ 1)ζωp(p)

2χp(p3)
(p− 1)

∫
t−1r+pZp

ωp(−u)d∗u

=
(p3)k/2−sp(p+ 1)ζωp(p)

2χp(p3)
ωp(−t−1r).

Equality (3.6) now follows, using the fact that
ζωp(p)
ωp(t) =

ζωp(p)2

ωp(pt) =
ωp(p)2

ζ . For fixed

t, if we sum (3.6) over ±ζ, we get 0. It follows that Iδ(s)p =
∑
σ Jδ(s, f

σ) = 0. �

Proposition 3.5. For a ∈ Q∗, let δa =
(
a −1
1 0

)
, so that

Jδa(s, fσ) =

∫
Q∗p

∫
Qp

fσ(

(
ya y(xa− 1)
1 x

)
)θp(rx)dxχp(y)|y|k/2−sp d∗y.
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Then Jδa(s, fσ1 ) vanishes unless a ∈ p2Zp and p - r. In this case, writing a = papa0

for a0 ∈ Z∗p ∩Q∗, we have

(3.8) Jδa(s, fσ1 ) =


|a|2s−kp p(p+ 1)ωp(p

ap)

2χp(a2)
θp(

ta

rp3
− r

a
) if a0 ≡ 1 mod p

0 otherwise.

The integral Jδa(s, fσ2 ) vanishes unless a ∈ p2Zp. For such a,

(3.9) Jδa(s, fσ2 ) =


(p3)k/2−sp(p+ 1)ωp(−p2r)

2χp(p3)ζ
θp(−

ta

rp3
) if p - r

0 otherwise.

Finally, Iδa(s)p vanishes unless p - r and a = papa0 for ap ≥ 2 and a0 ≡ 1 mod pZp.
If these conditions are satisfied, then
(3.10)

Iδa(s)p =
|a|2s−kp p(p+ 1)ωp(p

ap)θp(− r
a )

χp(a2)
∆p(a), for ∆p(a) =

{
p− 1, ap > 2

−1, ap = 2.

Proof. We start by computing Jδa(s, fσ1 ). From (2.22) we see that the determinant
of any matrix in the support of fσ1 is of the form (pm)2u for some m ∈ Z and u ∈ Z∗p
(the square factor coming from the center). Since det

( y
1

)
δa
(

1 x
0 1

)
= y, it follows

that we may assume y = u
p2`

for some ` ∈ Z and u ∈ Z∗p, and that(
p`

p`

)(
ya y(xa− 1)
1 x

)
=

(
p−`au p−`u(xa− 1)
p` p`x

)
∈
(

Z∗p p−1Zp
p2Zp 1 + pZp

)
.

This implies ap = ` ≥ 2, and that p`x = 1 + px′ for some x′ ∈ Zp. Then p−`dx =
p−1dx′. Making this substitution, we find that Jδa(s, fσ1 ) is equal to

(p`−1)ωp(p
`)(p2`)k/2−s

χp(p2`)

∫
Z∗p

∫
Zp

fσ1 (

(
a0u

1
p`
u((1 + px′)a0 − 1)

p` 1 + px′

)
)θp(

r(1+px′)
p`

)dx′d∗u.

In order that the integrand be nonzero, we need p−`((1 + px′)a0 − 1) ∈ p−1Zp, i.e.

1 + px′ ≡ a−1
0 mod p`−1Zp.

This is only possible if a0 ≡ 1 mod p. Assuming the latter condition holds, we set
1 + px′ = a−1

0 + p`−1x′′, so p−1dx′ = p1−`dx′′. Then, writing x in place of x′′, the
double integral becomes

pωp(p
`)(p2`)k/2−s

χp(p2`)

∫
Z∗p

∫
Zp

fσ1 (

(
a0u p−1xua0

p` a−1
0 + p`−1x

)
)θp(

r(a−1
0 +p`−1x)

p`
)dx d∗u.

After replacing u by ua−1
0 , this becomes

(p2`)k/2−sp(p+ 1)ωp(p
`)

2χp(p2`)
θp(
−r
p`a0

)

×
∑

w∈(Z/pZ)∗

∫
Z∗p

∫
Zp

θp(
−xuw − tp`−2(uw)−1

p
)θp(
−rx
p

)dx d∗u.
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Replacing u by −uw−1, we eliminate w, and the sum contributes a factor of (p−1).
The integral over x is then∫

Zp

θp(
(u− r)x

p
)dx =

{
1 if u ∈ r + pZp

0 otherwise.

In particular, it vanishes if p|r. Assuming p - r, the sum over w of the double
integral thus becomes

(p− 1)

∫
r+pZp

θp(
tp`−2u−1

p
)d∗u = θp(

tp`−2

rp
).

Hence

Jδa(s, fσ1 ) =
(p2`)k/2−sp(p+ 1)ωp(p

`)

2χp(p2`)
θp(

tp`−2

rp
− r

a
),

which establishes (3.8).
Now consider

Jδa(s, fσ2 ) =

∫
Q∗p

∫
Qp

fσ2 (

(
ya y(xa− 1)
1 x

)
)θp(rx)dxχp(y)|y|k/2−sp d∗y.

By (2.23), the integrand is nonzero precisely when(
p

p

)(
ya y(xa− 1)
1 x

)
=

(
pya py(xa− 1)
p px

)
∈
(

Zp p−2Z∗p
pZ∗p Zp

)
.

Taking the determinant, this says in particular that p2y ∈ p−1Z∗p, so we may write

y = u
p3 for u ∈ Z∗p. Setting px = x′, p−1dx = dx′,

Jδa(s, fσ2 ) =
(p3)k/2−spωp(p)

χp(p3)

∫
Z∗p

∫
Zp

fσ2 (

(ua
p2

u
p2 (xap − 1)

p x

)
)θp(
−rx
p

)dx d∗u.

From the upper left entry, the integrand is nonzero only if ap ≥ 2. Assuming the
latter, we also have xa

p − 1 ∈ Z∗p, so the upper right entry belongs to p−2Z∗p as

required. Hence by (2.23), the above is

=
(p3)k/2−sp(p+ 1)ζωp(p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(u)θp(−
uaw

p3
)

∫
Zp

ωp(
xa
p − 1)θp(

−txu−1(xap − 1)−1w−1

p
)θp(
−rx
p

)dx d∗u.

Note that ωp(
xa
p − 1) = ωp(−1) since p2|a. For the same reason,

θp(
−txu−1(xap − 1)−1w−1

p
) = θp(

tu−1w−1x

p
).

Therefore the above integral over Zp equals

ωp(−1)

∫
Zp

θp

( (−r + tu−1w−1)x

p

)
dx =

{
ωp(−1) if u ∈ tr−1w−1 + pZp

0 otherwise.

In particular, Jδa(s, fσ2 ) = 0 if p|r. Assuming p - r, Jδa(s, fσ2 ) equals

(p3)k/2−sp(p+ 1)ζωp(−p)
2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
tr−1w−1+pZp

ωp(u)θp(−
uaw

p3
)d∗u
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=
(p3)k/2−sp(p+ 1)ζωp(−p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)ωp(tr−1w−1)θp(−
tr−1a

p3
)

1

p− 1

=
(p3)k/2−sp(p+ 1)ζωp(−p)

2χp(p3)
ωp(tr−1)θp(−

tr−1a

p3
).

Equation (3.9) follows upon using
ζωp(p)
ωp(t) =

ωp(p)2

ζ .

Since Jδa(s, f
σt,ζ
2 ) + Jδa(s, f

σt,−ζ
2 ) = 0, we see that

Iδa(s)p =
∑
(t,ζ)

Jδa(s, fσ1 ) =
|a|2s−kp p(p+ 1)ωp(p)

ap

χp(a2)
θp(−

r

a
)∆p(a)

assuming p - r, a ∈ p2Zp, and a0 ≡ 1 mod p, where

∆p(a) =
∑

t∈(Z/pZ)∗

θp(
tpap−2

rp
) =

{
p− 1 if ap > 2

−1 if ap = 2.
�

3.2. Summary of local results. We summarize here the contribution of δ = 1,
which turns out to be the main term. By (7.7) and (7.8) of [JK], and (3.5) above,
we have
(3.11)

I1(s)p =



χp(r) if p|D
p(p+ 1)(p− 1) if p|N

(pnp)
k′
2 −s

min(rp,np)∑
dp=0

(pdp)2s−k′+1ωp(
pdp

pnp )χp(
p2dp

pnp ) if p|n

2k−1(2πr)k−s−1

(k − 2)!e2πr
Γ(s) if p =∞, k > 2

1 if p - NDn∞.

The local integrals for δ =
(

0 −1
1 0

)
are irrelevant, since those at places dividing

N vanish by (3.7).
We will discuss the local integrals for δ =

(
a −1
1 0

)
in §4.1 below.

4. Results for holomorphic cusp forms

In this section, we will prove the following.

Theorem 4.1. Let r, n,D,N, k ∈ Z+ with N square-free, k > 2, (rn,ND) = 1,
and (D,N) = 1. Let ω′ be a Dirichlet character modulo N , with ω′(−1) = (−1)k,
and let χ be a primitive Dirichlet character modulo D. Then for all s = σ + iτ in
the strip 1 < σ < k − 1,

(4.1)
∑

u∈Fnewk (N3,ω′)

λn(u)ar(u)Λ(s, u, χ)

ψ(N3)‖u‖2
= F + E,

where

F =
2k−1(2πrn)k−s−1

(k − 2)!
Γ(s)

∏
p|N

(1− 1
p )
∑
d|(n,r)

d2s−k+1ω′(nd )χ( rnd2 )
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is the main term, and the error term E (an infinite series involving confluent
hypergeometric functions) satisfies

|E| ≤
(4πrn)k−1ϕ(D) gcd(r, n)B(σ, k − σ)

∏
p|N (1− 1

p )

N2σDσ−k+ 1
2 (k − 2)!

2 cosh(πτ2 )ζ(k − σ)ζ(σ)

for the Beta function B(x, y) = Γ(x)Γ(y)
Γ(x+y) ≤ 1 and Euler’s ϕ-function.

Remark: If (r,N) > 1, then (4.1) vanishes. This is a consequence of the fact that
the local representations at p|N are supercuspidal, which implies that ap(u) = 0
(see e.g. the proof of Corollary 45 of [GHL10]) and hence ar(u) = 0. This is
reflected on the geometric side in (3.5).

The L-functions in Theorem 4.1 are normalized so that the central point is k
2 .

In order to free s from dependence on k we shift the variable so that the critical
strip becomes [0, 1] in the following.

Corollary 4.2. Suppose for simplicity that (n, r) = 1. Then for any point s in the
critical strip 0 < Re(s) < 1, the sum∑

u∈Fnewk (N3,ω′)

λn(u)ar(u)Λ(s+ k−1
2 , u, χ)

ψ(N3)‖u‖2

is nonzero as long as N + k is sufficiently large.

Proof. See the proof of Corollary 4.4 below. �

As another corollary, we can show that the central values L(k2 , h, χ) satisfy the
Lindelöf hypothesis on average as k + N → ∞ when χ is real and ω′ is trivial.
(Under these conditions, the central value is a nonnegative real number, [Gu].)

Corollary 4.3. Suppose that ω′ is trivial and χ is real. Then for k > 2,∑
u∈Fnewk (N3)

L(k2 , u, χ)�D (kN3)1+ε.

Proof. The proof is identical to that of Corollary 1.3 of [JK]. �

Remark: This is the same bound we would get by assuming the Lindelöf hypothe-
sis L(k2 , u, χ) � (D2kN3)ε, in view of the fact that |Fnewk (N3)| ∼ k−1

12 ψ
new(N3),

where (N3)1−ε � ψnew(N3) ≤ N3 ([Ser], (60) on p. 86).

Returning to the case of general ω′ and χ, let 〈Λn(s, χ), ar〉new denote the sum
in (4.1). We can regard this as an inner product of elements of the dual space of
Sk(N3, ω′)new. One can also define 〈Λn(s, χ), ar〉 in the same way, but where the
sum is taken over an orthogonal basis for the full space Sk(N3, ω′). It is interesting
to compare the two.

Corollary 4.4. Let s belong to the critical strip k−1
2 < Re(s) < k+1

2 , and suppose
that (n, r) = 1. Then with notation as above, we have

〈Λn(s, χ), ar〉new

〈Λn(s, χ), ar〉
∼
∏
p|N

(1− 1

p
)

as N + k →∞.
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Remark: From this we can observe two extremes in behavior. If N = p is prime, and
p → ∞, the above tends to 1, so the contribution of oldforms begomes negligible.
This agrees with a prediction of Ellenberg ([El], Remark 3.11). On the other hand,
if we take N to be the product of the first ` primes not dividing D and let `→∞,
the above goes to 0 and the contribution of the newforms becomes negligible.

Proof. In Theorem 1.1 of [JK], it is proven that

〈Λn(s, χ), ar〉 = F ′ + E′,

where F ′ =
F∏

p|N (1− 1
p )

, and |E′| satisfies a bound similar to the one given for

|E| in the above theorem, but without the factor of
∏
p|N (1− 1

p ), and with N3σ in

the denominator rather than N2σ. In the last line of the paper [JK], it is shown
using Stirling’s approximation that for s = k

2 + δ + iτ with |δ| < 1
2 ,∣∣∣∣E′F ′

∣∣∣∣� (4Dπrne)k/2

(N3)
k−1
2 k

k
2−1

,

where the implied constant depends on δ,D,R, n, τ . Clearly the above goes to 0 as
N + k →∞. The same bound holds for |EF |, but with N2 in place of N3, since the

extra factor of
∏

(1− 1
p ) in the numerator and denominator cancels out. Likewise∣∣∣∣ EF ′
∣∣∣∣ =

∣∣∣∣EF
∣∣∣∣∏
p|N

(1− 1

p
) ≤

∣∣∣∣EF
∣∣∣∣� (4Dπrne)k/2

(N2)
k−1
2 k

k
2−1

.

Now consider the quotient

〈Λn(s, χ), ar〉new

〈Λn(s, χ), ar〉
=

F + E

F ′ + E′
=

F
F ′ + E

F ′

1 + E′

F ′

=

∏
p|N (1− 1

p ) +O

(
(4Dπrne)k/2

(N2)
k−1
2 k

k
2
−1

)
1 +O

(
(4Dπrne)k/2

(N3)
k−1
2 k

k
2
−1

)
The corollary now follows easily. �

4.1. Proof of Theorem 4.1. In the holomorphic case, the spectral side (3.2)
becomes

n1−k/2

e2πr

∑
u∈Fnewk (N3,ω′)

λn(u)ar(u)

‖u‖2
Λ(s, u, χ).

By the local calculation (3.7), the geometric side has the form

I1(s) +
∑
a∈Q∗

Iδa(s).

As is typical, the identity term I1(s) is the dominant term as N + k →∞. Multi-
plying the local results (3.11) together, when k > 2 (so k′ = k) we obtain:

e2πrnk/2−1

ψ(N3)
I1(s) =

2k−1(2πrn)k−s−1

(k − 2)!
Γ(s)

∏
p|N

p(p+ 1)(p− 1)

p2(p+ 1)

∑
d|(r,n)

d2s−k+1ω′(nd )χ( rnd2 ).

This is the leading term of (4.1).
Theorem 4.1 now follows immediately from the following proposition involving

the remaining orbital integrals.
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Proposition 4.5. For δa =
(
a −1
1 0

)
with a ∈ Q∗, the orbital integral Iδa(s) is

absolutely convergent on the strip 0 < σ < k. It vanishes unless a = N2b
nD for

b ∈ Z − {0}. When s = σ + iτ for 1 < σ < k − 1, the sum
∑
a∈Q∗ Iδa(s) is

absolutely convergent, and

e2πrnk/2−1

ψ(N3)

∑
a∈Q∗

|Iδa(s)|

≤
(4πrn)k−1ϕ(D) gcd(r, n)B(σ, k − σ)

∏
p|N (1− 1

p )

N2σDσ−k+ 1
2 (k − 2)!

2 cosh(πτ2 )ζ(k − σ)ζ(σ).

Using the results of [JK] and (3.10) above, one can actually give a rather explicit
formula for the sum of the Iδa(s) as an infinite series. However, this involves a lot
of bookkeeping and seems of limited value, so we will just present the bound. First,

by (3.10), we note that for p|N , Iδa(s)p vanishes unless a = N2b
nD ∈ N

2Zp, and

(4.2) |Iδa(s)p| ≤ |N2b|2σ−kp p(p+1)(p−1) ≤ |N2|2σ−kp p(p+1)(p−1)

bp∑
dp=0

|pdp |2σ−kp .

Now suppose p - N∞. Then the value of Iδa(s)p is not quite stated explicitly in
[JK], but a closely related integral is given. Start with

Iδa(s)p =

∫
Q∗p

∫
Qp

fp(

(
ya y(xa− 1)
1 x

)
)θp(rx)dxχp(y)|y|k/2−sp d∗y.

A matrix belongs to the support of fp only if its determinant is of the form (pm)2nu
for some m ∈ Z and u ∈ Z∗p. This can be seen from (2.24) (for p|n), from the
expression for fχp three lines above (2.17) if p|D, and from (2.14) if p - nDN∞.
(In the latter two cases, n is a unit.) The determinant of the matrix in the above
integral is y, so the integrand vanishes unless y ∈ p−2dpnZ∗p for some dp ∈ Z. Write

a = N2b
nD , where (for now) b ∈ Q∗. It will be convenient to write y = nu

(N2d)2 for

d = pdp and u ∈ Z∗p. Then the above becomes∑
dp∈Z

χp(
n

N4d2 )

| nd2 |
s−k/2
p

∫
Z∗p

∫
Qp

fp(
(
N2d

N2d

)−1
(

nu
N2d

N2b
nD

nu
N2d (xN

2b
nD − 1)

N2d dN2x

)
)θp(rx)dxχp(u)d∗u.

Since the second matrix has determinant un ∈ nZ∗p, all entries must lie in Zp for

the integrand to be nonzero. In particular, dp ≥ 0. We may substitute x′ = dN2x,
so that dx′ = |dN2|p dx = |d|p dx. Using the fact that the central character ωp is
unramified, we obtain∑
dp≥0

χp(
n

N4d2 )ωp(d)

| nd2 |
s−k/2
p

|d|−1
p

∫
Z∗p

∫
Zp

fp(

(
ub
dD

ubx
N2d2D −

nu
N2d

N2d x

)
)θp(

rx
N2d )dxχp(u)d∗u.

The latter double integral coincides with (8.4) of [JK], but with N where we have
N2. It is computed explicitly in §8.1-8.2 of [JK]. In particular, it vanishes unless
0 ≤ dp ≤ bp, proving the assertion in Proposition 4.5 that the global integral

vanishes unless a = N2b
nD for nonzero b ∈ Z. Multiplying the coefficient by the



MODULAR L-VALUES OF CUBIC LEVEL 23

double integral, whose value is given in (8.7), (8.8), and (8.12) of [JK], we find

(4.3) |Iδa(s)p| ≤
ϕ(pDp)

|τ(χ)p|

bp∑
dp=0

|pdp |2σ−kp (p|D)

(4.4) |Iδa(s)p| ≤
|n|k/2−σp

| gcd(r, n)|p

bp∑
dp=0

|pdp |2σ−kp (p - DN∞).

(For the latter, we have used the fact that in [JK], gcd( bd , Nd)| gcd(r,Dn).) Multi-
plying the local bounds (4.2)-(4.4) together, we have

(4.5) |Iδa(s)fin| ≤
nσ−k/2ϕ(D) gcd(r, n)

(N2)2σ−k|τ(χ)|

(∏
p|N

p(p+ 1)(p− 1)
)∑
d|b

1

d2σ−k .

For the archimedean part, by (8.15) of [JK] we have

|Iδa(s)∞| =
∣∣∣∣ (4πr)k−1(N2)σ−kbs−keiπs/2

(k − 2)!(nD)σ−ke2πr 1f1(s; k;− 2πirnD
N2b )

∣∣∣∣ ,(4.6)

where bs = e−iπs|a|s if b < 0, and for Re(k) > Re(s) > 0,

1f1(s, k;w) = B(s, k − s)1F1(s; k;w) =

∫ 1

0

ewxxs−1(1− x)k−s−1dx

([Sl], §3.1). Noting that |1f1(s; k;− 2πirnD
N2b )| ≤

∫ 1

0
xσ−1(1−x)k−σ−1dx = B(σ, k−σ),

and that ∏
p|N p(p+ 1)(p− 1)

ψ(N3)
=
∏
p|N

p(p+ 1)(p− 1)

p2(p+ 1)
=
∏
p|N

(1− 1

p
),

we multiply (4.5) by (4.6) to get

e2πrnk/2−1

ψ(N3)
|Iδa(s)| ≤ (4πrn)k−1ϕ(D)e−πτ/2

N2σDσ−k+ 1
2 (k − 2)!

(
∏
p|N

(1− 1
p ))
∣∣bs−k∣∣B(σ, k−σ)

∑
d|b

gcd(r, n)

d2σ−k .

Now we need to bound the sum over b ∈ Z − {0}. Write b = ±cd for c, d > 0,
and group the c,−c terms together, so that

|cs−k|+ |(−c)s−k| = cσ−k + |(e−iπ)s−kcs−k| = cσ−k(1 + eπτ ).

Noting that e−πτ/2(1 + eπτ ) = 2 cosh(πτ2 ), we obtain

e−πτ/2
∑
b 6=0

|bs−k|
∑
d|b

1

d2σ−k = 2 cosh(πτ2 )
∑
c,d>0

cσ−kd−σ = 2 cosh(πτ2 )ζ(k − σ)ζ(σ).

Proposition 4.5 now follows immediately.

5. The case of non-holomorphic cusp forms

5.1. Integral transforms. Here we define various integral transforms involving
spherical functions. We refer to §3 of [KL3] for further detail.

Let f∞ ∈ C∞c (G(R)+//K∞) as in (2.15). The Harish-Chandra transform of
f∞ is the function on R+ defined by

Hf∞(y) = y−1/2

∫ ∞
−∞

f∞(

(
1 x
0 1

)(
y 0
0 1

)
)dx.
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We will also encounter the twisted variant

(5.1) Hrf∞(y) = y−1/2

∫ ∞
−∞

f∞(

(
1 x
0 1

)(
y

1

)
)e−2πirxdx

for r ∈ R, and a twisted variant in the big Bruhat cell

(5.2) Hr,αf∞(y) = y−1/2

∫ ∞
−∞

f∞(

(
1 x
0 1

)(
0 1
−1 α

)(
y

1

)
)e−2πirxdx

for α ∈ R. Each of the above functions is smooth with compact support in R+.
For φ ∈ C∞c (R+), the Mellin transform is denoted

Msφ =

∫ ∞
0

φ(y)ysd∗y.

Composing with the Harish-Chandra transform, we obtain the spherical trans-
form

Sf∞(s) =MsHf∞.
The Selberg transform of f∞ is defined by

(5.3) h(t) = Sf∞(it) =MitHf∞.
Then h(it) is an even Paley-Wiener function. This means that it is holomorphic
and there exists a real number C ≥ 1 depending only on h such that for any integer
M > 0, we have

(5.4) h(a+ ib)�M,h
C |b|

(1 + |a|)M
.

Using (5.1) we also define a twisted spherical transform of f∞ by

(5.5) hr(s) =MsHrf∞,
and a twisted variant in the big Bruhat cell

(5.6) hr,α(s) =MsHr,αf∞
for α ∈ R, as in (5.2). These functions likewise are holomorphic and satisfy (5.4),
though they are not even in general. Note that h0(s) = h(s).

5.2. Nonholomorphic case: spectral side. When k = 0, the spectral side (3.2)
of the relative trace formula becomes

(5.7) I =

√
n

2

∑
uj∈Fnew+ (N3,ω′)

λn(uj)ar(uj)Λ(s, uj , χ)

‖uj‖2
h(tj)Kitj (2π|r|).

Proposition 5.1. Let k = 0 and r ∈ Q. If σ = Re(s) is sufficiently large, then the
integral∫

Q∗\A∗

∫
Q\A

∑
u∈Fnew0 (N3,ω′)

∣∣∣λf (u)R(fχ)φu(
( y

1

)
)φu(

(
1 x
0 1

)
)

‖u‖2
|y|s−1/2

∣∣∣dx d∗y
is absolutely convergent. Hence as in Proposition 3.1, the integral (3.1) is equal to
(5.7) for such s. The sum (5.7) converges absolutely for all s ∈ C, and defines an
entire function.
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Proof. As in the proof of Proposition 3.1, by the fact there are at most finitely
many u with exceptional spectral parameters, it suffices to sum over the set F ′ of
newforms for which t is real. Thus we need to show that

(5.8)
∑
u∈F ′

|λf (u)|
‖u‖2

∫
Q∗\A∗

|φuχ(

(
y

1

)
)| yσ−1/2d∗y

∫
Q\A
|φu(

(
1 x
0 1

)
)|dx

is finite. The second integral is bounded by an absolute constant:∫
Q\A
|φu(

(
1 x
0 1

)
)|dx =

∫ 1

0

|u(i+ x)|dx ≤
∫ 1

0

∑
m6=0

∣∣∣am(u)Kit(2π|m|)e2πimx
∣∣∣dx

=
∑
m6=0

∣∣∣am(u)Kit(2π|m|)
∣∣∣�∑

m6=0

|m|1/2+εK0(2π|m|) <∞.

Here, we have used the fact that since t is real,

(5.9) |Kit(y)| =
∣∣∣∣ 12 ∫ ∞

0

e−y(w+w−1)/2witd∗w

∣∣∣∣ ≤ 1
2

∫ ∞
0

e−y(w+w−1)/2d∗w = K0(y),

and also the bound |am(u)| � |m|1/2+ε ([IK], (5.92)). The strongest known bound
of this nature is that of Kim and Sarnak [KS]:

(5.10) |am(u)| ≤ τ(|m|)|m|7/64,

where τ is the divisor function. This, together with (2.26), gives |λf (u)| �n |h(t)|.
By the above observations, and following the proof of Lemma 2.2, we see that (5.8)
is

(5.11) �
∑
u∈F ′

|h(t)|
‖u‖2

∫ ∞
0

|uχ(iy)|yσ−1/2d∗y.

Using the Fourier expansion of uχ, the above integral is bounded by∫ ∞
0

∑
m6=0

∣∣∣χ(m)am(u)Kit(2π|m|y)
∣∣∣yσd∗y ≤ (2π)−σ

∑
m 6=0

|am(u)|
mσ

∫ ∞
0

|Kit(y)|yσd∗y.

Once again invoking (5.9), we have∫ ∞
0

|Kit(y)|yσd∗y ≤
∫ ∞

0

K0(y)yσd∗y = 2σ−2Γ(σ/2)2

by a well-known identity for σ > 0 (cf. [GRy], 6.561.16). Using (5.10), we see
that the sum over m is bounded by an absolute constant when σ ≥ 3. This shows
that the integral of uχ in (5.11) is bounded by a constant independent of u and
depending continuously on σ ≥ 3. As shown by Goldfeld, Hoffstein and Liemann,

(5.12)
1

‖u‖2
�ε N

ε(1 + |t|)ε

for an absolute (ineffective) implied constant, [GHL94]. Thus we reduce to proving
that

(5.13)
∑
uj∈F ′

|h(tj)|(1 + |tj |)ε <∞.

This follows from (5.4) and the fact that |tj | → ∞ (for details, see the end of the
proof of Proposition 7.5 of [KL3]).
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Now we prove that the sum (5.7) is absolutely convergent for all s ∈ C. Once
again, it suffices to sum over u ∈ F ′. Thus (using (5.10) to bound ar(u) and λn(u)),
we need to show

(5.14)
∑
uj∈F ′

∣∣Γ(
s+itj

2 )Γ(
s−itj

2 )L(s, uj , χ)h(tj)Kitj (2π|r|)
∣∣

‖uj‖2
<∞.

By Stirling’s formula ([AS], 6.1.39), for real t 6= 0 (taking arg(it) = ±π2 ) we have

(5.15)

∣∣∣∣Γ(
s+ it

2
)Γ(

s− it
2

)

∣∣∣∣ ∼ 2π

∣∣∣∣( it2 )
s+it−1

2
(
− it

2

) s−it−1
2

∣∣∣∣ = 2π
( |t|

2

)σ−1

e−π|t|/2

as |t| → ∞. Similarly, because t is real, we have

(5.16) Kit(2π|r|)� e−π|t|/2

as |t| → ∞ (cf. eq. (19) on p. 88 of [Er]).
To bound the L-functions, by the functional equation we can assume without

losing generality that σ ≥ 1/2. For such s, we have the the uniform convexity
bound

L(s, uj , χ)�ε (D2N3)1/4+ε(|s|+ 3)1/2+ε(|tj |+ 3)1/2+ε

([IK], Theorem 5.41 and (5.8)). Here the implied constant is independent of uj .
Using (5.12), we now find that the left-hand side of (5.14) is

� (|s|+ 3)1/2+ε
∑
uj

(|tj |+ 3)1/2+ε(
|tj |
2 )σ−1|h(tj)|e−π|tj |

The finiteness of the above sum follows as for (5.13). It is clear as well that the
convergence is uniform for s in compact sets, giving an entire function. �

5.3. Non-holomorphic case: geometric side. By Proposition 3.2 and (3.7),
the geometric side is equal to

I1(s) +
∑
a∈Q∗

Iδa(s),

for δa =
(
a −1
1 0

)
. The only changes from the holomorphic case discussed earlier are

archimedean. For example, it remains true here that Iδa(s) 6= 0 only if a = N2b
nD

for some nonzero integer b. The local orbital integrals at ∞ are now given as
general integral transforms of f∞ ∈ C∞c (G(R)+//K∞). Using the fact that f∞ has
compact support modulo Z∞, we will see that all but finitely many of the geometric
terms vanish, and indeed if N is sufficiently large, the only nonzero term is the main
term.

For the main term we have, upon replacing y by y−1 in (3.3),

I1(s)∞ =

∫
R∗

∫
R

f∞(

(
y xy
0 1

)
)e2πirxdxχ∞(y)|y|1/2−sd∗y.

Since f∞ is supported on G(R)+, the first integral can be taken over R+, where
χ∞ is trivial. Furthermore, since f∞ is bi-invariant under Z∞K∞, it follows easily
(using the Cartan decomposition [KL3, §3.1]) that

(5.17) f∞(g) = f∞(g−1).
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Therefore

(5.18) I1(s)∞ =

∫ ∞
0

∫ ∞
−∞

f∞(

(
y−1 −x
0 1

)
)e2πirxdx y1/2−sd∗y

=

∫ ∞
0

[
y−1/2

∫ ∞
−∞

f∞(

(
y x
0 1

)
)e−2πirxdx

]
ysd∗y =MsHrf∞ = hr(s)

as in (5.5).
Multiplying the above by the local non-archimedean values given in (3.11) (taking

k′ = 1), we obtain the following.

Proposition 5.2. The global integral I1(s) is nonzero only if gcd(r,N) = 1. In
this case,

I1(s) =
hr(s)

ns−1/2
N
∏
p|N

(p2 − 1)
∑

d| gcd(n,r)

d2sω′(nd )χ( rnd2 ).

For δa =

(
a −1
1 0

)
, the archimedean orbital integral is

Iδa(s)∞ =

∫
R∗

∫
R

f∞(

(
y

1

)(
a −1
1 0

)(
1 x
0 1

)
)e2πirxdxχ∞(y)|y|1/2−sd∗y

=

∫ ∞
0

∫
R

f∞(

(
1 −x
0 1

)(
0 1
−1 a

)(
y−1

1

)
)e2πirxdx y1/2−sd∗y

(5.19) =

∫ ∞
0

∫
R

f∞(

(
1 x
0 1

)(
0 1
−1 a

)(
y

1

)
)e−2πirxdx ys−1/2d∗y,

=Ms(Hr,af∞) = hr,a(s)

as in (5.6).

Proposition 5.3. For any choice of f∞ ∈ C∞c (G(R)+//K∞), Iδ(s) = 0 for all but
finitely many δ. Indeed, there exists a constant C, depending on f∞ and n, such
that

(5.20)
∑
δ

Iδ(s) = I1(s) =
hr(s)

ns−1/2
N
∏
p|N

(p2 − 1)
∑

d| gcd(n,r)

d2sω′(nd )χ( rnd2 )

whenever N > C.

Proof. The function
( α β
γ δ

)
7→ αγ

αδ−βγ is well-defined in G(R). Hence it is bounded

on the compact set Supp(f∞)/Z∞. Taking(
α β
γ δ

)
=

(
y

1

)(
a −1
1 0

)(
1 x

1

)
=

(
ya y(xa− 1)
1 x

)
,

we have αγ
αδ−βγ = a. This shows that if |a| is sufficiently large, the above matrix lies

outside the support of f∞ for all x, y, and hence Iδa(s) = 0. Furthermore, because

|a| = N2

n |b| ≥
N2

n →∞
as N →∞, when N is sufficiently large the only nonzero term is I1(s). �

Putting everything together, we now arrive at the main result for Maass forms.
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Theorem 5.4. Let r, n,N be positive integers with N square-free and (rn,N) =
1. Let χ be a primitive Dirichlet character of modulus D, where (D, rnN) = 1.
Let h(iz) be an even Paley-Wiener function. When the square-free integer N is
sufficiently large, we have for all s ∈ C,∑

uj∈Fnew+ (N3,ω′)

λn(uj) ar(uj) Λ(s, uj , χ)

ψ(N3)‖uj‖2
h(tj)Kitj (2π|r|)(5.21)

=
2

ns
hr(s)

∏
p|N

(1− 1

p
)

∑
d| gcd(n,r)

d2s ω′(nd )χ( rnd2 )

for hr(s) as in (5.5).

Remarks: (1) An immediate corollary (at least when gcd(n, r) = 1) is the exis-
tence of a Maass newform of level N3 for which λn(u), ar(u), and Λ(s, u, χ) are
simultaneously nonzero.

(2) When gcd(r, n) = 1, the sum on RHS becomes ω′(n)χ(rn). If r = n = 1,
then the RHS is independent of χ. This is the case stated as Theorem 1.1.

(3) Both sides vanish when (r,N) > 1. See the remark after Theorem 4.1.
(4) One can weaken the hypotheses somewhat. It is sufficient for h(iz) to be

Paley-Wiener of order m ≥ 8 (cf. Corollary 6.12 and (3.14) of [KL3]).

Proof. As a consequence of Proposition 3.2 and the above discussion, the equality
between the spectral side (5.7) and the geometric side (5.20) has been established
in some right half-plane Re(s) ≥ α for α sufficiently large. Multiplying both sides
of this relative trace formula by 2√

nψ(N3)
we obtain (5.21) for such s. On the other

hand, by Proposition 5.1, each side of (5.21) is an entire function of s. Hence the
equality is valid for all complex s. �
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Amer. Math. Soc., 10 (1997), no. 1, pp. 75-102.

[Sl] L. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960.

Department of Mathematics & Statistics, University of Maine, Neville Hall, Orono,

ME 04469-5752, USA

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong
Kong


	1. Introduction
	2. Preliminaries
	2.1. Orthogonality of matrix coefficients
	2.2. Notation and measure
	2.3. Cusp forms
	2.4. Adelic cusp forms
	2.5. Newforms
	2.6. Twisting
	2.7. A particular choice of function

	3. A relative trace formula
	3.1. Orbital integrals for p|N
	3.2. Summary of local results

	4. Results for holomorphic cusp forms
	4.1. Proof of Theorem 4.1

	5. The case of non-holomorphic cusp forms
	5.1. Integral transforms
	5.2. Nonholomorphic case: spectral side
	5.3. Non-holomorphic case: geometric side

	References

