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Abstract

We compute the space of codimension 2 Tate classes on a product of two Picard modular

surfaces in terms of automorphic representations on GLðnÞ; no4: The relevant part of the
fourth cohomology splits into subspaces indexed by pairs of such automorphic representa-

tions. When these representations are not automorphically induced, the corresponding Tate

classes are shown to be abelian.

r 2004 Elsevier Inc. All rights reserved.

Let X be a smooth projective variety defined over a number field E; and let

%X ¼ X �E Q:

For a prime c; let HiðXÞ ¼ Hið %Xét;QcÞ be the c-adic cohomology of X : The Galois

group G ¼ GalðQ=EÞ acts on HiðXÞ by a representation ri: For any jAZ; let

HiðXÞð jÞ denote the representation of G on HiðXÞ defined by ri#w j
c ; where wc is the

cyclotomic character. For any finite extension L=E; define

GL ¼ GalðQ=LÞ;

which is an open subgroup of G: A Tate class is an element of H2iðXÞðiÞGL for some
L=E: A Tate class is defined over L if it is fixed by GL:
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To each cycle Z on X of codimension i and defined over L there is associated a

cohomology class cðZÞAH2iðXÞðiÞ by c-adic Poincaré duality. Such a cohomology
class is said to be algebraic. In this situation cðZÞ is fixed by GL: Tate’s conjecture
asserts that conversely every Tate class is algebraic.
A basic first step in studying Tate’s conjecture is to identify the Tate classes on X :

This is the goal of the present paper, when X is a product of two Picard modular
surfaces (relative to a fixed imaginary quadratic field), and i ¼ 2:We shall determine the
Tate classes in terms of the automorphic representations associated to the two surfaces.
In [MP], Murty and Prasad studied the same problem for a product of Hilbert

modular surfaces. Their work applies in addition to the case of two modular surfaces
relative to two distinct real quadratic fields.

Notation: A denotes the ring of adeles of Q; and Af the finite adeles. If E is a

number field, then AE denotes the adeles of E: If p is an automorphic representation
then pf ¼ #poN pp; and pE denotes the base change to E:

1. Review of the cohomology of a Picard surface

We collect some facts from [LR], where full details can be found. Fix a quadratic

imaginary extension E=Q; and a Hermitian inner product on E3 of signature ð2; 1Þ:
Let GU be the associated quasi-split unitary similitude group over Q: GUN ¼
GUðRÞ is the real Lie group GUð2; 1Þ: The symmetric space associated to GU is

B ¼ GUðRÞ=KNZN;

where KNCGUðRÞ is a maximal compact subgroup, and Z is the center of GU: B

can be identified in a natural way with the unit ball in C2:

Fix a nontrivial algebraic homomorphism h : ResCRðGmÞ-GUðRÞ which satisfies
the axioms for defining a Shimura variety. Fix an open compact subgroup K of
GUðAf Þ and let SK ¼ SKðGU; hÞ be the associated (compactified) Shimura variety.
SK is defined over E and SKðCÞ is the compactification of

GUðQÞ\ðB �GUðAf ÞÞ=K ;

which is a disjoint union of arithmetic quotients of B:
Let H ¼ HKðQÞ be the Hecke algebra of Q-valued compactly supported bi-K-

invariant functions on GUðAf Þ: For anyQ-algebra A; letHðAÞ ¼ H#A: The Galois

group

G ¼ GalðQ=EÞ

and the Hecke algebra H both act on H�ðSKÞ: Over Qc; the degree 2 cohomology of

S decomposes as an HðQcÞ-module into isotypic components which are stable under
the commuting action of G:

H2ðSKÞ#Qc ¼
M
pf

Hðpf Þ: ð1Þ
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Here p runs through the automorphic representations of GUðAÞ for which

* p occurs in the discrete spectrum of GUðAÞ:
* pNAftriv;Dþ;D;D	g; where triv is the trivial representation, and Dþ;D;D	 are
the lowest weight holomorphic, non-holomorphic, and anti-holomorphic discrete
series representations of GUN with trivial central characters.

* The subspace pK
f ðCÞ of pf consisting of K-fixed vectors is nonzero (and hence is

an irreducible finite-dimensional representation of H).

Any such p is either one-dimensional or cuspidal and infinite-dimensional. The
second condition is equivalent to the property that

H2ðLieðGUNÞ;KN

0; pNÞa0;

where K 0
N
is the centralizer of the center of KN in GUN: There are finitely many p

which satisfy the conditions.
There is a (noncanonical) decomposition

Hðpf Þ ¼ Vpf
#pK

f ;

where Vpf
is a Qc-vector space of dimension dðpf Þp3; and pK

f ¼ pK
f ðQÞ#Qc; where

pK
f ðQÞ is a Q-form of pK

f ðCÞ: G acts continuously on Hðpf Þ by a representation of
the form rpf

#1: (This is the definition of rpf
). The isomorphism class of r is

independent of the choice of the above decomposition; for concreteness, one can

take Vpf
¼ HomHðpK

f ;H2ðSKÞ#QcÞ; but this obscures the point of view that rpf

acts on the cohomology. Fix an embedding

e :Qc+C:

The representation r is unramified at almost every place w of E: The local L-factor of
r at such a place

Lwðs; rÞ ¼ detð1	 eðrðFrwÞÞq	s
w Þ	1;

where FrwAG is a geometric Frobenius element.
The relationship between rpf

and pf is the following. There is an automorphic

representation sp of GLdðpf ÞðAEÞ associated to p in a natural way (see below) such

that for almost all w

Lwðs; rpf
Þ ¼ Lwðs 	 1; spÞ: ð2Þ

The dimension dðpf Þ of rpf
is the number of pN such that pf #pN occurs in the

discrete spectrum. This number varies according to the classification of pf as

stable, endoscopic, or 1-dimensional. If pf is stable and infinite-dimensional,
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then dðpf Þ ¼ 3; and

sp ¼ ðp0ÞE#%wp;

where p0 ¼ pjUð3Þ: (This is independent of the choice of pN). In the endoscopic cases,
dðpf Þ ¼ 1 or 2. The 2-dimensional case occurs in certain instances when p0 is an
endoscopic lift of some t1#t2 on Uð2Þ �Uð1Þ: In these cases,

sp ¼ ðt1ÞE#%wp;

where ðt1ÞE is the nonstandard base change of t1: The remaining (one-dimensional)
cases are summarized in [BR].
Note the difference between sp and pE in the stable case:

pEDðp0ÞE#%wp

is a representation of GL3ðAEÞ �GL1ðAEÞ; while

sp ¼ ðp0ÞE#ð%wp3detÞ

is a representation of GL3ðAEÞ: It is therefore conceivable that sp1Dsp2 when ðp1ÞED/
ðp2ÞE ; i.e. two distinct L-packets on GU could give rise to isomorphic Galois represent-

ations. In this case however, ðp1Þ0 and ðp2Þ0 belong to the same L-packet on U.

Definition 1. We say that p is AI if sp is automorphically induced from a Hecke
character of some field L of degree dðpf Þ over E:

In the stable case, p is AI if and only if ðp0ÞE is automorphically induced. Also

note that if dðpf Þ ¼ 1 then pf is (trivially) AI by this definition.

We recall two theorems from [BR].

Theorem 1 (Blasius and Rogawski [BR, 2.2.1]). Let p and r ¼ rpf
be as above. For

any number field L=E let rL ¼ rjGL
: Then one of the following two statements holds:

(1) rL is irreducible for every finite extension L=E:
(2) There exists an extension L=E of degree dðpf Þ and an algebraic Hecke character C

of L such that rDIndE
LðCÞ:

The second case occurs precisely when p is AI.
This irreducibility result is used in [BR] to prove the algebraicity of the Tate classes

in H2ðSKÞð1Þ: For a large class of pf ; there are no associated Tate classes:

Theorem 2 (Blasius and Rogawski [BR, 3.2.1]). Let HTðpf Þ denote the space of Tate

classes in Hðpf Þð1Þ for SK : Then

HTðpf Þ ¼
Hðpf Þð1Þ if dðpf Þ ¼ 1 and Inf ðpf Þ ¼ D or triv

f0g otherwise:

�
All such Tate classes are defined over abelian extensions of E:
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For use in the next section, we record the following observation.

Lemma 1. Suppose pf is as above. Then V�
pf

¼ Vp�
f
ð2Þ:

Proof. Let s ¼ sp as in (2). Given a place w of E; let Frw be a geometric Frobenius

element of GalðQ=EÞ; and let gwðsÞ be the Langlands class of s at w: Then (2) is
equivalent to

rpðFrwÞBqwgwðsÞ;

for almost all w: Then

r�pðFrwÞB q	1
w gwðsÞ	1

¼ q	2
w ðqwgwðsÞ	1Þ

¼ q	2
w rp� ðFrwÞ;

since s�p ¼ sp� : Therefore r�pDrp�#w2c by Cebotarev and continuity of the r’s. &

2. Cohomology of a product of Picard surfaces

If S1 and S2 are two Picard surfaces for open compact subgroups K1 and K2; then
by the Künneth formula we have

H4ðS1 � S2Þð2Þ ¼
M

iþj¼4
HiðS1Þ#HjðS2Þð2Þ:

The most interesting part of this decomposition is

H2ðS1Þð1Þ#H2ðS2Þð1Þ:

(Although the other summands will provide Tate classes, the Galois representations

on Hj; ja2; are abelian ([Ro2, Section 4.3]), and indeed in the nontrivial cases
ð j ¼ 1; 3Þ are attached to the Albanese varieties, which are of CM-type and for
which Tate’s conjecture is known.)
Suppose R is a ring, and that V ;W are free R-modules on which G acts

continuously. Recall that

V �#WDHomRðV ;WÞ

as representations, where G acts on the right by ðgf ÞðvÞ ¼ gð f ðg	1vÞÞ: It follows
from this that fAHomRðV ;WÞG if and only if fAHomR½G�ðV ;WÞ; i.e. if and only if f

is an intertwining operator from V to W :
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In order to use automorphic representations to study the Tate classes in H2ðS1Þð1Þ
#H2ðS2Þð1Þ; we extend scalars to Qc:

½H2ðS1Þð1Þ#H2ðS2Þð1Þ�#Qc
Qc

¼ ½H2ðS1Þð1Þ#Qc�#½H2ðS2Þð1Þ#Qc�

¼
M

i

Vpi
ð1Þ#pK1

i

 !
#

M
j

Vpj
ð1Þ#pK2

j

 !
;

where pi and pj are representations of GUðAf Þ; and Vpi
is a Qc-vector space of

dimension p3: We rearrange the factors and pull out the sums to get:

M
i;j

ðVpi
ð1Þ#Vpj

ð1ÞÞ#ðpK1

i #pK2

j Þ:

G acts on each summand above by ðrið1Þ#rjð1ÞÞ#1:

For a number field L containing E we need to compute the GL-invariant subspace
of Vp1ð1Þ#Vp2ð1Þ: This is isomorphic to the space

Hom
Qc½GL�ðVp1ð1Þ

�;Vp2ð1ÞÞ ¼ Hom
Qc½GL�ðV

�
p1ð	1Þ;Vp2ð1ÞÞ:

By Lemma 1, V�
p1 ¼ Vp�

1
ð2Þ; and for notational convenience we replace p1 with p�1:

Thus we must determine

Hom
Qc½GL�ðVp1ð1Þ;Vp2ð1ÞÞ

for various pi: This space is canonically isomorphic to

Hom
Qc½GL�ðVp1 ;Vp2Þ:

Lemma 2. Let ðs;VÞ and ðt;WÞ be n-dimensional representations of G over Qc:
Suppose H is an open normal subgroup of G; and tjH is irreducible. Then sjHDtjH iff

sDt#f; for some f :G-Q
�
c; trivial on H:

Proof. Fixing bases for V and W ; we view s and t as maps from G into GLnðQcÞ:
Suppose there exists AAGLnðQcÞ such that

sðhÞ ¼ AtðhÞA	1

for all hAH: For any gAG; define

fðgÞ ¼ tðgÞ	1A	1sðgÞAAGLnðQcÞ:
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Clearly fðhÞ ¼ 1 for all hAH: In fact fðgÞ is a scalar for all gAG: This follows
because one computes directly that

fðgÞ	1tðhÞfðgÞ ¼ tðhÞ for all gAG; hAH;

using the fact that H is normal in G: Because tjH is irreducible, Schur’s lemma

implies that fðgÞAQ
�
c: Thus sDt#f: The converse is clear. &

Lemma 3. Suppose either p1 or p2 is non-AI. Let si ¼ spi
as in (2). Then for any finite

Galois extension L=E;

Hom
Qc½GL�ðVp1 ;Vp2Þ ¼

Qc if s1Ds2#f for some character f

of A�
E which is trivial on E�NL

E ðA�
LÞ:

0 otherwise:

264

Proof. If for example p1 is non-AI, then ðVp1 ; rp1LÞ is an irreducible representation
of GL of dimension 2 or 3: Then the Qc-dimension of the above space is the
multiplicity of rp1L in rp2L by Schur’s lemma. Because the dimension of rp2L is p3;

this multiplicity can only be 0 or 1. In the latter case, p2 must also be non-AI, and
rp1LDrp2L; which by the previous lemma occurs if and only if

rp1Drp2#f;

for some character f :G-Q
�
c; trivial on GL: By the relationship between si and rpi

and strong multiplicity one for GLðnÞ; this is equivalent to s1Ds2#f; where we
identify f with the character of A�

E obtained by pulling back the Artin map:

A�
E=E�-GalðL=EÞab !f Q

�
c !

e
C�: &

We say that a Tate class in H2ðS1Þð1Þ#H2ðS2Þð1Þ is a new Tate class if it is not a
tensor product of Tate classes on the two factors. Because the Tate conjecture is
known for each surface, the Tate conjecture for codimension-2 cycles on S1 � S2

depends on finding algebraic cycles for the new Tate classes.
In light of Theorem 2, the above lemma immediately implies the following:

Theorem 3. Let p1 and p2 be cuspidal and cohomological for S1 and S2; respectively.

Then:

(1) If exactly one of p1; p2 is AI, then Hðp1Þð1Þ#Hðp2Þð1Þ contains no Tate classes.
(2) If p1 and p2 are both non-AI, then Hðp1Þð1Þ#Hðp2Þð1Þ contains a Tate class if

and only if s�1Ds2#f for some finite order Hecke character f of E: In this case,

the subspace of Tate classes has the same dimension as pK1

1 #pK2

2 ; and all such Tate

classes are new and defined over the abelian extension of E defined by f:
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3. Tate classes in the AI case

It remains to consider the cases where p1 and p2 are both AI. By symmetry, we can
assume dðp1Þpdðp2Þp3: Thus there are six cases, which we refer to as ðdðp1Þ; dðp2ÞÞ:
The cases where dðp2Þ ¼ 3 are complicated by the possibility that sp2 (or sp1 ) could
be AI from a non-normal cubic extension.
As could be expected, the new Tate classes coming from AI representations are

generally not defined over abelian extensions of E:
The (1,1) case can be handled exactly as in the non-AI case, and the second

statement of the above theorem applies here to characterize the Tate classes, with the
exception that these may be old Tate classes. (By Theorem 2, this is the only case
which contributes old Tate classes).
For the general case, let M=E be a field extension of degree p3; and let

f :GM-Q
�
c be a continuous character. Let r ¼ IndE

MðfÞ: We review the fact that if

f is replaced by any of its Galois conjugates, the resulting induced representation is
isomorphic to r: First suppose M=E is Galois, and let tAG 	 GM : Then

rM ¼
f"ft if ½E : M� ¼ 2

f"ft"ft2 if ½E : M� ¼ 3;

(

where ftðsÞ ¼ fðt	1stÞ: Any of the characters f;ft;ft2 can be used to define r; i.e.

r ¼ IndE
MðfÞDIndE

MðftÞDIndE
Mðft2Þ:

The same statement is true in the case where M=E is a non-normal cubic extension.

In this case, let eMM be the Galois closure of M over E; so that G=G
MeDS3: Let tAG be

an element which has order 3 in this quotient. Then

r
Me¼ f"ft"ft2 :

Here the characters on the right are characters of G
Me ; although f extends to GM ;

this is not the case for ft and ft2 since GM is not a normal subgroup of G: However

it is easy to see that ft extends to GtðMÞ ¼ tGMt	1; and ft2 extends to Gt2ðMÞ: In this

way we have

r ¼ IndE
MðfÞDIndE

tðMÞðftÞDIndE
t2ðMÞðft2Þ:

Theorem 4. Suppose p1 and p2 are both AI, so that si ¼ AIE
Mi
ðfiÞ for algebraic Hecke

characters fi of fields Mi of degree dðpiÞ over E: Let eMM be the normal closure of

M1M2 over E: Then Hðp1Þð1Þ#Hðp2Þð1Þ contains a Tate class if and only if

ðf2Þ
	1
Me ¼ ðf1ÞMe#y
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for some finite order Hecke character y of eMM: (The subscript eMM denotes base change).
The corresponding Tate classes are defined over the smallest field L on which y is

trivial.

Proof. Identifying fi with Galois characters by class field theory, we have r1 ¼
IndE

M1
ðf1Þ and r2 ¼ IndE

M2
ðf2Þ: Suppose HomLðr1; r2Þa0: Enlarging L if necessary,

we may assume eMMCL and that L= eMM is a normal extension. Then as representations
of GL; r1 and r2 split into sums of characters. At least one of the characters coming
from r1L must equal one of those coming from r2L: By the preceding discussion, we
do not lose generality if we assume

f1L ¼ f2L:

Then by Lemma 2,

ðf2ÞMe¼ ðf1ÞMe#y;

for some character y of G
Mewhich is trivial on GL: This is equivalent to the assertion

in the theorem (replacing r1 by r�1 amounts to replacing f1 by f	1
1 ).

Conversely, given that ðf2ÞMe¼ ðf1ÞMe#y; it is easy to see that there is a nonzero

intertwining operator from r1L to r2L for any L containing eMM and on which y is
trivial. &

When r1 is one-dimensional, we can refine the above condition:

Theorem 5. Suppose dðp1Þ ¼ 1 and p2 is AI. Then Hðp1Þð1Þ#Hðp2Þð1Þ contains a

new Tate class if and only if

s2 ¼ AIE
Mððs	11 ÞM#yÞ

for some finite order Hecke character y of M:

Proof. We will assume dðp2Þ ¼ 3 and that s2 is AI from a non-normal cubic

extension M=E; the other cases being easier. Thus let f :GM-Q
�
c be an algebraic

Hecke character, and let r2 ¼ IndE
MðfÞ: Suppose HomLðr1;r2Þa0: Let eMM be the

normal closure of M over E: Enlarging L; we assume that eMMCL is a normal
extension. Then as in the proof of the above theorem, we have

r
1Me¼ f

Me¼ f#y	1

for some finite order character y of G
Me: Extend y to a character of GM by the

formula

yðsÞ ¼ fðsÞr1ðs	1Þ; sAGM :
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Then r1M ¼ f#y	1; so

r2 ¼ IndE
Mðr1M#yÞ;

which gives the desired formula. The converse is clear. &
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