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Abstract

We compute the space of codimension 2 Tate classes on a product of two Picard modular
surfaces in terms of automorphic representations on GL(n), n<4. The relevant part of the
fourth cohomology splits into subspaces indexed by pairs of such automorphic representa-
tions. When these representations are not automorphically induced, the corresponding Tate
classes are shown to be abelian.
© 2004 Elsevier Inc. All rights reserved.

Let X be a smooth projective variety defined over a number field E, and let

X:XXEG

For a prime 7, let H'(X) = H'(X,,Q,) be the /-adic cohomology of X. The Galois
group G = Gal(Q/E) acts on H(X) by a representation p;. For any jeZ, let
H'(X)(j) denote the representation of G on H'(X) defined by p,»@;(/j, where y, is the
cyclotomic character. For any finite extension L/FE, define

G, = Gal(Q/L),

which is an open subgroup of G. A Tate class is an element of H*(X)(i)°* for some
L/E. A Tate class is defined over L if it is fixed by Gy.
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To each cycle Z on X of codimension i and defined over L there is associated a
cohomology class ¢(Z)e H*(X)(i) by /-adic Poincaré duality. Such a cohomology
class is said to be algebraic. In this situation ¢(Z) is fixed by Gr. Tate’s conjecture
asserts that conversely every Tate class is algebraic.

A basic first step in studying Tate’s conjecture is to identify the Tate classes on X.
This is the goal of the present paper, when X is a product of two Picard modular
surfaces (relative to a fixed imaginary quadratic field), and i = 2. We shall determine the
Tate classes in terms of the automorphic representations associated to the two surfaces.

In [MP], Murty and Prasad studied the same problem for a product of Hilbert
modular surfaces. Their work applies in addition to the case of two modular surfaces
relative to two distinct real quadratic fields.

Notation: A denotes the ring of adeles of Q, and A, the finite adeles. If E is a
number field, then Ag denotes the adeles of E. If 7 is an automorphic representation
then 7y = ® )< 7,, and g denotes the base change to E.

1. Review of the cohomology of a Picard surface

We collect some facts from [LR], where full details can be found. Fix a quadratic
imaginary extension £/Q, and a Hermitian inner product on E3 of signature (2, 1).
Let GU be the associated quasi-split unitary similitude group over Q. GU, =
GU(R) is the real Lie group GU(2,1). The symmetric space associated to GU is

B=GUR)/K.Z,,

where K., « GU(R) is a maximal compact subgroup, and Z is the center of GU. B
can be identified in a natural way with the unit ball in C.
Fix a nontrivial algebraic homomorphism /: Res§(G,,) »GU(R) which satisfies

the axioms for defining a Shimura variety. Fix an open compact subgroup K of
GU(Ay) and let Sk = Sx(GU, h) be the associated (compactified) Shimura variety.
Sk is defined over E and Sk(C) is the compactification of

GU(Q)\(B x GU(Af))/K,

which is a disjoint union of arithmetic quotients of B.
Let H = Hx(Q) be the Hecke algebra of Q-valued compactly supported bi-K-
invariant functions on GU(Ay). For any Q-algebra 4, let H(A4) = H ® A. The Galois

group
G = Gal(Q/E)
and the Hecke algebra H both act on H*(Sk). Over Q,, the degree 2 cohomology of

S decomposes as an H(Q,)-module into isotypic components which are stable under
the commuting action of G:

*(Sk)®Q, = GB H (7). (1)
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Here 7 runs through the automorphic representations of GU(A) for which

® 7 occurs in the discrete spectrum of GU(A).

® 7w, e{triv, D", D, D}, where triv is the trivial representation, and D*, D, D™ are
the lowest weight holomorphic, non-holomorphic, and anti-holomorphic discrete
series representations of GU,, with trivial central characters.

® The subspace nf (C) of ny consisting of K-fixed vectors is nonzero (and hence is

an irreducible finite-dimensional representation of H).

Any such 7 is either one-dimensional or cuspidal and infinite-dimensional. The
second condition is equivalent to the property that

H?(Lie(GU,), K./, 1) #0,

where K’ is the centralizer of the center of K, in GU,,. There are finitely many =
which satisfy the conditions.
There is a (noncanonical) decomposition

H(ry) = Ve @77

where Vy, is a Q,-vector space of dimension d(r;) <3, and nf = 7f(Q) ® Q,, where
nf (Q) is a Q-form of nf(C). G acts continuously on H(m) by a representation of
the form P, ® 1. (This is the definition of pm). The isomorphism class of p is
independent of the choice of the above decomposition; for concreteness, one can
take V, = Homy(nf, H*(Sx) ®Q,), but this obscures the point of view that p,
acts on the cohomology. Fix an embedding

66{L>C

The representation p is unramified at almost every place w of E. The local L-factor of
p at such a place

Ly.(s, p) = det(1 — e(p(Fr,)g;*) ",

where Fr,, € G is a geometric Frobenius element.
The relationship between p, and 7, is the following. There is an automorphic

representation g, of GLy(,)(Af) associated to m in a natural way (see below) such
that for almost all w

Lw(sa Pn/) = Lw(s -1, O-n)' (2)

The dimension d(ny) of p, is the number of 7., such that 7y @7, occurs in the

discrete spectrum. This number varies according to the classification of m, as
stable, endoscopic, or 1-dimensional. If 7, is stable and infinite-dimensional,
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then d(ns) = 3, and
Og = (ﬂO)E®Zm

where 7y = 7|y (3. (This is independent of the choice of 7). In the endoscopic cases,
d(ny) =1 or 2. The 2-dimensional case occurs in certain instances when g is an
endoscopic lift of some 7; ® 1, on U(2) x U(1). In these cases,

Onp = (TI)E®ZTI7
where (1) is the nonstandard base change of 7;. The remaining (one-dimensional)

cases are summarized in [BR].
Note the difference between o, and 7g in the stable case:

g = (TCO)E ® Zn
is a representation of GL3;(Ag) x GL,(Ag), while
or = (70) p @ (Tzodet)

is a representation of GL3(Af). It is therefore conceivable that o, ~a,, when (n) 2%
(m2) g, 1.e. two distinct L-packets on GU could give rise to isomorphic Galois represent-
ations. In this case however, (71), and (72), belong to the same L-packet on U.

Definition 1. We say that = is Al if ¢, is automorphically induced from a Hecke
character of some field L of degree d(ny) over E.

In the stable case, 7 is Al if and only if (np), is automorphically induced. Also
note that if d(ny) = 1 then =y is (trivially) Al by this definition.
We recall two theorems from [BR].

Theorem 1 (Blasius and Rogawski [BR, 2.2.1]). Let n and p = P, be as above. For
any number field L/E let p; = p|s,. Then one of the following two statements holds:

(1) py is irreducible for every finite extension L/E.
(2) There exists an extension L/ E of degree d(ny) and an algebraic Hecke character ¥

of L such that p=Ind%(¥).

The second case occurs precisely when 7 is Al
This irreducibility result is used in [BR] to prove the algebraicity of the Tate classes
in H%(Sk)(1). For a large class of ny, there are no associated Tate classes:

Theorem 2 (Blasius and Rogawski [BR, 3.2.1]). Let H (ny) denote the space of Tate
classes in H(ny)(1) for Sx. Then

H(ny)(1) if d(my) =1 and Inf(ny) = D or triv

H (ny) =
() {0} otherwise.

All such Tate classes are defined over abelian extensions of E.
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For use in the next section, we record the following observation.

Lemma 1. Suppose ny is as above. Then V; = Vn;(Z).

Proof. Let 0 = g, as in (2). Given a place w of E|, let Fr,, be a geometric Frobenius

element of Gal(Q/E), and let g,,(¢) be the Langlands class of ¢ at w. Then (2) is
equivalent to

P (Fry) ~ g (0),
for almost all w. Then

p:r(Frw) ~ q)zlgw«)')il

- -1
= qwz(qwgw(a) )
= q\zzpn* (Frw)y

since ¢}, = g,-. Therefore p} ~p_ . ® /3 by Cebotarev and continuity of the p’s. O

2. Cohomology of a product of Picard surfaces

If S| and S, are two Picard surfaces for open compact subgroups K; and K3, then
by the Kiinneth formula we have

HYS1 x $)(2) = @ H'(S)QH(S:)(2).
i+j=4

The most interesting part of this decomposition is
HX(S1)(1) @ H*(S2)(1).

(Although the other summands will provide Tate classes, the Galois representations
on H/, j#2, are abelian ([Ro2, Section 4.3]), and indeed in the nontrivial cases
(7 =1,3) are attached to the Albanese varieties, which are of CM-type and for
which Tate’s conjecture is known.)

Suppose R is a ring, and that VW are free R-modules on which G acts
continuously. Recall that

V*® W ~Homg(V, W)

as representations, where G acts on the right by (gf)(v) = g(f (g~ 'v)). It follows
from this that f € Homg (¥, W) if and only if feHompgg(V, W), i.e.if and only if /
is an intertwining operator from V to W.
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In order to use automorphic representations to study the Tate classes in H>(S;)(1)
® H?(S,)(1), we extend scalars to Q,:

[H2(S1)(1) @ H(52)(1)] ®0,Q/
= [H*(S)(1)®Q/|® [H(5:)(1) ®Q/]

- (@ Vn,.a)@nfl)@(@ Vn,<1>®nf2),
i J

where m; and m; are representations of GU(Ay), and V5, is a Q,-vector space of
dimension <3. We rearrange the factors and pull out the sums to get:

D Vu(H® Ve (1)@ (x @n2).

i

G acts on each summand above by (p;(1)®p;(1))®1.
For a number field L containing E we need to compute the G, -invariant subspace
of V7, (1)® V,(1). This is isomorphic to the space

Homg 5, (Va (1), Vs (1)) = Homg g, (V2 (~1), Vs (1).

By Lemma 1, V; = Vz (2), and for notational convenience we replace 7; with 7.
Thus we must determine

Homa,[GL] ( Vﬂl (1)7 Vﬂz (1))

for various ;. This space is canonically isomorphic to

Homg (o (Vz,, V).

Lemma 2. Let (0,V) and (v, W) be n-dimensional representations of G over Q,.
Suppose H is an open normal subgroup of G, and t|,; is irreducible. Then o|y =1\, iff

a=1t® ¢, for some ¢ : G—>6;, trivial on H.

Proof. Fixing bases for V and W, we view ¢ and 1 as maps from G into GL,(Q,).
Suppose there exists 4€GL,(Q,) such that

a(h) = At(h)A™!

for all he H. For any ge G, define

d(g) =(9)"' 4 a(9)AeGLL(Q,).
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Clearly ¢(h) =1 for all he H. In fact ¢(g) is a scalar for all ge G. This follows
because one computes directly that

o(9) 't(W(g) = (k) for all geG, heH,

using the fact that H is normal in G. Because 1|, is irreducible, Schur’s lemma
implies that ¢(g) eéj Thus 6 =t ® ¢. The converse is clear. [

Lemma 3. Suppose either ) or my is non-Al Let 6; = o5, as in (2). Then for any finite
Galois extension L/E,

Q, if a1=0,® ¢ for some character ¢
Homg (o (Vz, Va,) = of Ay which is trivial on E*NE(A}).

0 otherwise.

Proof. If for example 7; is non-Al, then (V7,,p,, ) is an irreducible representation
of Gy of dimension 2 or 3. Then the Q,-dimension of the above space is the
multiplicity of p, ; in p, ; by Schur’s lemma. Because the dimension of p, ; is <3,
this multiplicity can only be 0 or 1. In the latter case, 7, must also be non-Al, and
P 1 = Pr,r, Which by the previous lemma occurs if and only if

Py = Pr, @O,

for some character ¢ : G—»G;, trivial on Gr. By the relationship between ¢; and p,.
and strong multiplicity one for GL(n), this is equivalent to o]~ 0, ® ¢, where we
identify ¢ with the character of A} obtained by pulling back the Artin map:

AL/E* >Gal(L/E)Y 2. Q. Le. O

We say that a Tate class in H2(S1)(1) @ H*(S,)(1) is a new Tate class if it is not a
tensor product of Tate classes on the two factors. Because the Tate conjecture is
known for each surface, the Tate conjecture for codimension-2 cycles on S| x S,
depends on finding algebraic cycles for the new Tate classes.

In light of Theorem 2, the above lemma immediately implies the following:

Theorem 3. Let m; and ©y be cuspidal and cohomological for S\ and S,, respectively.
Then:

(1) If exactly one of my,my is AL then H(m;)(1)® H(m)(1) contains no Tate classes.

(2) If my and ©y are both non-Al, then H(m1)(1)® H(my)(1) contains a Tate class if
and only if 67 = 0, ® ¢ for some finite order Hecke character ¢ of E. In this case,
the subspace of Tate classes has the same dimension as nf‘ ® nfz, and all such Tate
classes are new and defined over the abelian extension of E defined by ¢.
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3. Tate classes in the Al case

It remains to consider the cases where 7; and 7, are both Al. By symmetry, we can
assume d(n;) <d(m) < 3. Thus there are six cases, which we refer to as (d(n;), d(n2)).
The cases where d(n;) = 3 are complicated by the possibility that ¢,, (or a,,) could
be Al from a non-normal cubic extension.

As could be expected, the new Tate classes coming from Al representations are
generally not defined over abelian extensions of E.

The (1,1) case can be handled exactly as in the non-Al case, and the second
statement of the above theorem applies here to characterize the Tate classes, with the
exception that these may be old Tate classes. (By Theorem 2, this is the only case
which contributes old Tate classes).

For the general case, let M/E be a field extension of degree <3, and let
¢: Gy —>6; be a continuous character. Let p = Ind%,(¢). We review the fact that if
¢ is replaced by any of its Galois conjugates, the resulting induced representation is
isomorphic to p. First suppose M/E is Galois, and let te G — G;. Then

BECLs if [E:M]=2
P = PDP DPT if [E: M] =3,

where ¢°(c) = ¢(t~'o1). Any of the characters ¢, ¢, (]512 can be used to define p, i.e.

p = Ind}; (¢) =Ind}; (¢") = Ind}, (47).

The same statement is true in the case where M /E is a non-normal cubic extension.
In this case, let M be the Galois closure of M over E, so that G/ G;=S;. Lette G be
an element which has order 3 in this quotient. Then

Pi= DN @

Here the characters on the right are characters of G;; although ¢ extends to Gy,
this is not the case for ¢* and q’)fz since Gy, is not a normal subgroup of G. However
it is easy to see that ¢° extends to Gy(yy) = Gyt !, and qbfz extends to G2(3y). In this
way we have

2

p = Indy (§) =Indgy) (¢7) =Indz 4y (¢7).-

Theorem 4. Suppose n| and ©, are both Al so that o; = Alf,,l_(d),-)for algebraic Hecke

characters ¢; of fields M; of degree d(m;) over E. Let M be the normal closure of
M\ M, over E. Then H(n;)(1)® H(n;)(1) contains a Tate class if and only if

(62)57 = (1) 7®0
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for some finite order Hecke character 0 0f1\71 . (The subscript M denotes base change).
The corresponding Tate classes are defined over the smallest field L on which 0 is
trivial.

Proof. Identifying ¢; with Galois characters by class field theory, we have p, =
Ind’,a1 (¢,) and p, = Indfh(qﬁg. Suppose Homy (p;, p5) #0. Enlarging L if necessary,

we may assume M <L and that L/ M is a normal extension. Then as representations
of G, p, and p, split into sums of characters. At least one of the characters coming
from p,; must equal one of those coming from p,;. By the preceding discussion, we
do not lose generality if we assume

d)lL = 4)2L'

Then by Lemma 2,
(1) 7= (¢1) 5R0,

for some character 6 of G ;7 which is trivial on G.. This is equivalent to the assertion

in the theorem (replacing p, by p} amounts to replacing ¢, by ¢f1).
Conversely, given that (¢,) ;7 = (¢) 7®0, it is easy to see that there is a nonzero

intertwining operator from p,; to p,; for any L containing M and on which 0 is
trivial. O

When p, is one-dimensional, we can refine the above condition:

Theorem 5. Suppose d(n1) =1 and n, is AL Then H(m;)(1)® H(m;)(1) contains a
new Tate class if and only if

o2 = Aly((07"), ®0)
for some finite order Hecke character 0 of M.

Proof. We will assume d(m;) =3 and that o, is Al from a non-normal cubic
extension M /E, the other cases being easier. Thus let ¢ : Gy —>6; be an algebraic
Hecke character, and let p, = Ind%,(¢). Suppose Homy (p;, p,)#0. Let M be the

normal closure of M over E. Enlarging L, we assume that McL is a normal
extension. Then as in the proof of the above theorem, we have

piii=br=0®0"

for some finite order character 0 of G Extend 0 to a character of Gy by the
formula

0(0) = ¢(a)py ("), e
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Then p,,; = ¢®0O7, so

Py = Ind],f,,(leGA)G),

which gives the desired formula. The converse is clear. [
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